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Abstract

Gamboa Rodríguez, Carlos Andrés; Valladão, Davi Michel (Ad-
visor); Street de Aguiar, Alexandre (Co-Advisor). Conservative-
solution methodologies for stochastic programming: A distri-
butionally robust optimization approach. Rio de Janeiro, 2021.
Tese de Doutorado 85p. – Departamento de Engenharia Indus-
trial, Pontifícia Universidade Católica do Rio de Janeiro.

Two-stage stochastic programming is a mathematical framework
widely used in real-life applications such as power system operation
planning, supply chains, logistics, inventory management, and financial
planning. Since most of these problems cannot be solved analytically,
decision-makers make use of numerical methods to obtain a near-optimal
solution. Some applications rely on the implementation of non-converged
and therefore sub-optimal solutions because of computational time or
power limitations. In this context, the existing methods provide an op-
timistic solution whenever convergence is not attained. Optimistic so-
lutions often generate high disappointment levels because they consis-
tently underestimate the actual costs in the approximate objective func-
tion. To address this issue, we have developed two conservative-solution
methodologies for two-stage stochastic linear programming problems
with right-hand-side uncertainty and rectangular support: When the ac-
tual data-generating probability distribution is known, we propose a DRO
problem based on partition-adapted conditional expectations whose com-
plexity grows exponentially with the uncertainty dimensionality; When
only historical observations of the uncertainty are available, we propose
a DRO problem based on the Wasserstein metric to incorporate ambi-
guity over the actual data-generating probability distribution. For this
latter approach, existing methods rely on dual vertex enumeration of the
second-stage problem rendering the DRO problem intractable in practical
applications. In this context, we propose algorithmic schemes to address
the computational complexity of both approaches. Computational experi-
ments are presented for the farmer problem, aircraft allocation problem,
and the stochastic unit commitment problem.

Keywords
Two-stage stochastic programming; Distributtionally robust optimiza-

tion; Exact bound partition methods; Decomposition methods; Wasser-
stein metric;
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Resumo

Gamboa Rodríguez, Carlos Andrés; Valladão, Davi Michel; Street
de Aguiar, Alexandre. Metodologias para obtenção de soluções
conservadoras para programação estocástica: Uma abordagem
de otimização robusta à distribuições. Rio de Janeiro, 2021. Tese
de Doutorado 85p. – Departamento de Engenharia Industrial,
Pontifícia Universidade Católica do Rio de Janeiro.

A programação estocástica dois estágios é uma abordagem
matemática amplamente usada em aplicações da vida real, como plane-
jamento da operação de sistemas de energia, cadeias de suprimentos,
logística, gerenciamento de inventário e planejamento financeiro. Como
a maior parte desses problemas não pode ser resolvida analiticamente,
os tomadores de decisão utilizam métodos numéricos para obter uma
solução quase ótima. Em algumas aplicações, soluções não convergidas
e, portanto, sub-ótimas terminam sendo implementadas devido a limi-
tações de tempo ou esforço computacional. Nesse contexto, os métodos
existentes fornecem uma solução otimista sempre que a convergência
não é atingida. As soluções otimistas geralmente geram altos níveis
de arrependimento porque subestimam os custos reais na função obje-
tivo aproximada. Para resolver esse problema, temos desenvolvido duas
metodologias de solução conservadora para problemas de programação
linear estocástica dois estágios com incerteza do lado direito e suporte re-
tangular: Quando a verdadeira distribuição de probabilidade da incerteza
é conhecida, propomos um problema DRO (Distributionally Robust Opti-
mization) baseado em esperanças condicionais adaptadas à uma partição
do suporte cuja complexidade cresce exponencialmente com a dimension-
alidade da incerteza; Quando apenas observações históricas da incerteza
estão disponíveis, propomos um problema de DRO baseado na métrica
de Wasserstein a fim de incorporar ambiguidade sobre a real distribuição
de probabilidade da incerteza. Para esta última abordagem, os métodos
existentes dependem da enumeração dos vértices duais do problema de
segundo estágio, tornando o problema DRO intratável em aplicações
práticas. Nesse contexto, propomos esquemas algorítmicos para lidar
com a complexidade computacional de ambas abordagens. Experimentos
computacionais são apresentados para o problema do fazendeiro, o prob-
lema de alocação de aviões, e o problema do planejamento da operação
do sistema elétrico (unit ommitmnet problem).

Palavras-chave
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1
Introduction

Two-stage stochastic programming is a mathematical framework
to model decision making under uncertainty. In this context, first-stage
decisions are made under uncertainty, while the second-stage (or recourse)
decisions are intended to correct the impact of the first-stage decisions after
observing the uncertainty realization. This framework is widely used in
real-world applications covering the planning of power system operations
and supply chain, logistics, inventory, and financial planning, to mention
a few. Since there is no analytical solution to most two-stage stochastic
optimization problems, efficient numerical methods are of paramount
importance.

One of the first numerical methods explored in the stochastic pro-
gramming literature utilized bounds for the expected recourse function.
Initiated by [2], this approach considers minimization problems of which
the recourse is a convex function of the uncertainty. It relies on a partition
of the uncertainty support, the law of total probability, and Jensen’s and
Edmundson-Madanski’s inequalities in order to obtain lower and upper
bounds for the optimal value of the problem. Partition refinement methods
ensure improvements to the approximation error with a monotone sequence
of limits (see [3–7]). It is worth mentioning that this numerical approach
provides an exact solution for the stochastic optimization problem. Indeed,
it is based on numerical integration techniques known for a long time which
is why the referenced works are fairly old.

With the advancement of computers, this approach was replaced
by sampling-based techniques, (see, e.g., [8] for a review). In data-driven
settings the so-called Sample Average Approximation (SAA) approach, a
terminology introduced by [9], is the most popular method to solve
two-stage stochastic problems because of its asymptotic convergence and
tractability. For a cost minimization problem, the SAA method is based on
the approximation of the expected cost by the sample average cost. The
obtained solution is an statistical estimator whose quality can be assessed
by an interval confidence level. The randomness of the obtained solution
may be a practical difficulty in the SAA method. On the other hand, the
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Chapter 1. Introduction 13

approximated solution of the SAA is optimistic since this method considers
just a subset of scenarios in the decision-making process. Moreover, as
mentioned in [1, 10], in many settings the SAA solution tends to display a
poor out-of-sample performance and may be highly unstable for a finite
moderate sample.

Indeed, in a centralized system setting, a sampling method is not
appropriate because of the randomness of the obtained solution. Moreover,
to obtain a converged solution without randomness – exact solution – or
low variability – SAA solution for a large sample – entails computational
overburden. Additionally, some practical applications have a computing-
time budget, whereby non-converged sub-optimal solutions are usually
implemented. It is important to note that all existing methods (exact
bounds or sampling-based) generates optimistic non-converged sub-optimal
solutions that usually generates high disappointment levels: out-of-sample
costs significantly higher than in-sample estimates. In this context, we
believe that an audited decision with computing-time budget must have
a solution methodology that provides conservative non-converged sub-
optimal solutions at every step the algorithm to avoid practical consequences
of cost disappointment.

To address this issue, our main objective is to study solution method-
ologies to obtain exact conservative solutions for two-stage stochastic linear
programming problems with right-hand-side uncertainty and rectangular
support. In this context, we focus on Distributionally Robust Optimiza-
tion (DRO), which is a mathematical framework that minimizes the worst-
case of the expected cost over an ambiguity set comprising plausible data-
generating probability distributions. We developed two DRO approaches
assuming we know: (i) the actual data-generating (continuous) probability
distribution; (ii) historical observations of the uncertainty.

The proposed conservative solution methodologies are motivated
by the idea that distributionally robust solutions avoid out-of-sample
disappointment. In both cases, we face a computational challenge because
of the exponential complexity of the problem. To address this issue, we
propose algorithmic schemes based on exact decomposition methods by
exploring specific characteristics for computational tractability.

We summarize below our main contributions to conservative solution
methodologies for two-stage stochastic problems with right-hand-side
uncertainty and rectangular support:

• Raise awareness on the negative impact of optimistic solution methods
to solve two-stage stochastic optimization problems.
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Chapter 1. Introduction 14

• A new conservative solution framework for two-stage stochastic linear
optimization problems based on a deterministic partition refinement
algorithm and exact bounds, assuming a continuous probability
distribution.

– Reformulation of the upper-bound, conservative, distributionally
robust problem into a linear programming model.

– Development of two acceleration procedures, i.e., 1) an exact
decomposition approach based on the column and constraint
generation algorithm to solve medium-scaled problems and 2) an
approximative simplex-based partitioning scheme to find robust
solutions for large-scale instances.

• A new decomposition scheme to solve the DRO problem with a
Wasserstein ambiguity set and the rectangular uncertainty support.

– We develop a novel master-oracle decomposition framework
based on a new and exact MILP-based oracle subproblem.

– We develop three decomposition methods, namely, Column-
Constraint Generation, Single-cut Benders, and Multi-cut Benders.

– We illustrate the computational performance of the proposed
methods for a unit commitment problem with 5, 14, and 54
thermal generators over a 24-hour uncertainty dimension.

The remainder of this thesis is organized as follows: Chapter 2 presents
the novel conservative partition-refinement method for the case when the
actual data-generating distribution is known. In Chapter 3 is presented
the DRO approach with Wasserstein ambiguity set for the case when only
historical data is available. Chapter 4 presents numerical experiments based
on the unit commitment problem for assessing the proposed solution
methodology presented in Chapter 3. Finally, in Chapter 5, relevant
conclusions are provided for both conservative solution methodologies.
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2
Moment-based distributionally robust optimization approach

One of the first numerical methods explored in the stochastic program-
ming literature utilized bounds for the expected recourse function. It relies
on a partition of the uncertainty support, the law of total probability, and
Jensen’s and Edmundson-Madanski inequalities in order to obtain lower
and upper bounds. Starting from the law of total probability, previous works
have provided an optimistic solution by applying Jensen’s inequality to
each partition cell to obtain the lower approximation problem in a com-
putationally tractable fashion. The optimal value of this proxy provides a
lower bound to the original problem because it replaces the expected re-
course function by a weighted average recourse evaluation. A deterministic
optimality gap is obtained by fixing the current solution and computing
an upper-bound that applies Edmundson-Madanski inequality to each cell
of the partition and averages its results with the associated probability
mass. Given a refining partition sequence, this method converges to the
true optimal in an optimistic manner, i.e., at each iteration, the solution
underestimates the actual recourse costs. The available partition refinement
methods in literature only provide optimistic solutions when the method is
not converged. The available partition refinement methods in literature only
provide optimistic solutions when the method is not converged.

By assuming that the actual data-generating distribution is known, we
developed a conservative solution methodology for the class of two-stage
stochastic linear optimization problems with right-hand-side uncertainty
and rectangular support. We formulated a distributionally robust optimiza-
tion model based on a generalization of Edmundson-Madanski inequality
(see [3, 11, 12]), and solved it to obtain a conservative solution and a tighter
upper bound to the original problem. The distributionally robust model
minimizes the worst expected cost over every extreme probability measure
with known partition-adapted conditional expectations. A deterministic
optimality gap was obtained by solving the lower-bound problem that ap-
plied Jensen’s inequality to each partition cell and computing the distance
between both limits.

Nevertheless, in the presence of high dimensional uncertainty vectors,
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Chapter 2. Moment-based distributionally robust optimization approach 16

the proposed method is challenged because of the exponential growth of
the number of linear constraints and variables. To handle this, we propose
different solution schemes depending on the uncertainty’s dimensional-
ity: (i) for problems with low-dimensional uncertainty, we developed a
deterministic equivalent linear programming model, (ii) for medium-sized
uncertainty dimensionality, we propose a column and constraint generation
algorithm [13], and (iii) to handle high dimensional uncertainty, we propose
a simplex-based heuristic method whose complexity grows linearly with
the uncertainty dimension. For the latter, we prove convergence when the
recourse function is monotone over the uncertainty.

2.1
Theoretical background for the moment-based approach

In this section, we introduce the nomenclature and provide a short
review of the existing partition methods from which our contributions of
the first-moment-based approach are derived. To clarify the notation, we
begin by introducing some definitions of probability theory. We assume a
probability space (Ω,F , P) and the random vector ξ : Ω −→ Rdξ , which is
called the uncertain variable. Given the measurable space (Rdξ ,B), where
B denotes the Borel σ-algebra of Rdξ , we denote by P the distribution of ξ

which is a probability for the measurable space (Rdξ ,B). This probability is
defined by P(A) = P({ω ∈ Ω : ξ(ω) ∈ A}) = P(ξ ∈ A), for all A ∈ B.

2.2
Notation and definitions

We study two-stage stochastic linear programming problems of the
form:

z∗ := min
x∈X
{ f (x) := c>x + E[Q(x, ξ)]} (2-1)

where

Q(x, ξ) =min
y≥0

q>y (2-2a)

s.t. Wy = H(x)ξ + r(x). (2-2b)

is known as the recourse function or second-stage problem 1. This model
corresponds to a linear optimization problem that minimizes the cost where

1While this formulation (which we borrow from [14]) is not in the form usually
associated with two-stage models in which the second-stage constraints are written as
Wy = h(ξ)− T(ξ)x), it easy to see that we can rewrite these equations as in (2-2b) by
representing the random elements of h and T as ξ and defining H(x) and r(x) appropriately.
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Chapter 2. Moment-based distributionally robust optimization approach 17

x denotes the first-stage decisions, y denotes the second-stage decisions
and the expectation E[Q(x, ξ)] represents the expected cost of the recourse.
We assume that the random vector ξ has known probability distribution
P with support in Ξ ⊆ Rdξ and the expectation E[·] is taken with respect
to the distribution P2. We denote the set of feasible first-stage decisions by
X ⊆ Rdx . Here, c ∈ Rdx , q ∈ Rdy , W ∈ Rmy×dy .
In the problem (2-2), H(x) ∈ Rmy×dξ and r(x) ∈ Rmy represent a decision-
dependent matrix and vector, respectively. We assume that H : X → Rmy×dξ

and r : X → Rmy are affine functions of x. Moreover, we assume that
problem (2-1) has complete recourse, i.e., problem (2-2) is feasible for every
x ∈ X, and every realization of the unknown data ξ; the uncertainty support
Ξ is compact and the expectation E[Q(x, ξ)] exists.

The existing partition-based method [2, 4, 5, 7, 11, 15] makes use of a
partition of the support of the uncertainty to generate a monotonic sequence
of limits. These limits are given by the optimal objective values of the
upper- and lower-bound problems obtained by the classical inequalities of
Edmundson-Mandanski and Jensen, respectively.

According to previous reported partition methods, we start from the
partition of the uncertainty support Ξ. The set Pn = {Ξk : k = 1, . . . , n} of
cells Ξk, is a partition of the support Ξ ⊂ Rdξ if:

1. P
(⋂

k∈K Ξk) = 0, ∀K ⊆ {1, . . . , n},

2.
n⋃

k=1
Ξk = Ξ.

Since most real-life applications are based on bounded probability distribu-
tions for the uncertainty, in this work, we assume rectangular support for the
data-generating probability distribution. Moreover, we assume rectangular
partitions with cells of the form Ξk =

�dξ

i=1[a
k
i , bk

i ], because the partition
refinement procedure for this partition regards the method computational
tractable.

Finally, even thought the disappointment concept has been widely
studied by the risk-averse theory and there exist several definitions under
this concept, in this work, we assume the following definition:

Definition 1. The disappointment is the difference between the out-of-sample cost
and the in-sample estimate.

2Sometimes we write EP̃[·] to emphasise that the expectation E[·] is taken with respect
to the probability distribution P̃.
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Chapter 2. Moment-based distributionally robust optimization approach 18

2.3
Existing lower bound

According to [2], if we consider a partition of the uncertainty support
Ξ, by the law of total probability, we have that the expectation in (2-1) can
be expressed by E[Q(x, ξ)] = ∑n

k=1 pkE[Q(x, ξ)|ξ ∈ Ξk], where pk = P(Ξk)

is the probability mass of the cell k, k = 1, . . . , n. Then (2-1) is equivalent to
the following linear programming problem:

min
x∈X

{
f (x) := c>x +

n

∑
k=1

pkE[Q(x, ξ)|ξ ∈ Ξk]

}
(2-3)

For the first-moment-based approach, we consider as nominal value
of ξ the conditional mean ξ

k
= E[ξ|ξ ∈ Ξk], for each cell k = 1, . . . , n. Given

that Q(x, ξ) is convex in ξ for all x ∈ X, by Jensen’s inequality we have that

Q(x, ξ
k
) ≤ E[Q(x, ξ)|ξ ∈ Ξk], k = 1, . . . , n,

which gives the following lower-bound for the optimal objective value of
(2-3):

zL
n :=min

x∈X

{
f L
n (x) := c>x +

n

∑
k=1

pkQ(x, ξ
k
)

}

≤ min
x∈X

{
c>x +

n

∑
k=1

pkE[Q(x, ξ)|ξ ∈ Ξk]

}
.

(2-4)

Note that the lower-bound problem on the left side of Eq. (2-4) underesti-
mates the expected cost, because it only considers the finite set of conditional
mean scenarios {ξk

: k = 1, . . . , n} to approximate E[Q(x, ξ)].
We can explicitly write the lower-bound problem as the following

deterministic-equivalent linear program:

min
x,yk

c>x +
n

∑
k=1

pkq>yk

s.t. Wyk = H(x)ξ
k
+ r(x), k = 1, . . . , n,

yk ≥ 0, k = 1, . . . , n,

x ∈ X.

(2-5)

Note that the number of blocks of linear constraints for (2-5) is the same as
the partition size, meaning that the lower-bound problem does not demand
a high computational effort. When n is not sufficiently large, the optimal
solution xL

n of (2-5) represents an optimistic decision because the lower
approximation from bellow to the conditional expectation E[Q(x, ξ)|ξ ∈ Ξk]

by Q(x, ξ
k
), k = 1, . . . , n.
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It is worth mentioning that generally the computing of pk = P(Ξk) and
ξ

k
= E[ξ|ξ ∈ Ξk is not easy. By assuming independence or linear correlation,

this computing derives in a uni-dimensional numerical integration problem
which is easily solved by computational tools. However, in general, this
computing can be done by using the importance sample technique in a
tractable fashion. Under this technique, we can compute the probability
mass pk and the conditional expectation ξ

k
by generating samples from an

independent multivariate uniform probability distribution.

2.4
Existing upper bound

To derive an upper bound for the expectation E[Q(x, ξ)], Edmundson-
Madanski [16] initially proposed an inequality based on a convex combina-
tion of the value of Q(x, ·) at the extreme points of the convex hull of the
support Ξ. Therefore, if {ej : j = 1, . . . , 2dξ} is the set of extreme points

of Ξ =
�dξ

i=1[ai, bi], since every point ξ ∈ Ξ can be expressed by a convex
combination of the vertices of Ξ, it is always possible to find pj(ξ) ≥ 0,
j = 1, . . . , 2dξ , such that

2dξ

∑
j=1

pj(ξ) · ej = ξ ∀ξ ∈ Ξ (2-6)

and
2dξ

∑
j=1

pj(ξ) = 1 ∀ξ ∈ Ξ. (2-7)

The weights pj(ξ), j = 1, . . . , 2dξ , can be interpreted as conditional prob-
abilities, i.e., pj(ξ) = P(e = ej | ξ), considering a random vector e with
support in the set of extreme points {ej : j = 1, . . . , 2dξ}. Given that
(2-6) and (2-7) are true and Q(x, ·) is a convex function for any given
x, the following inequality holds for any set of conditional probabilities
{(p1(ξ), . . . , p

2dξ
(ξ))}ξ∈Ξ:

E[Q(x, ξ)] =
∫

Ξ
Q

x,
2dξ

∑
j=1

pj(ξ)ej

 P(dξ) ≤
2dξ

∑
j=1

Q(x, ej)
∫

Ξ
pj(ξ)P(dξ).

Therefore,
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E[Q(x, ξ)] ≤ max
pj(ξ)

2dξ

∑
j=1

Q(x, ej)
∫

Ξ
pj(ξ)dP(dξ)

s.t.
2dξ

∑
j=1

ej pj(ξ) = ξ ∀ξ ∈ Ξ

2dξ

∑
j=1

pj(ξ) = 1 ∀ξ ∈ Ξ.

(2-8)

Note that (2-8) is a semi-infinite optimization problem that allows us
to derive an upper bound through a tractable finite relaxation. If we replace
the two set of constraints in (2-8) with their expected value, i.e.,

2dξ

∑
j=1

ej

∫
Ξ

pj(ξ)dP(dξ) = ξ

2dξ

∑
j=1

∫
Ξ

pj(ξ)dP(dξ) = 1,

and denote δj =
∫

Ξ pj(ξ)P(dξ), for j = 1, . . . , 2dξ , we obtain an upper bound
based on the following tractable finite linear optimization problem:

max
δ∈D(ξ̄)

Eδ [Q(x, e)] := max
δ≥0

2dξ

∑
j=1

Q(x, ej) δj

s.t.
2dξ

∑
j=1

ej δj = ξ,

2dξ

∑
j=1

δj = 1,

(2-9)

where D(ξ) =
{

δ ∈ R2dξ

+ : ∑2dξ

j=1 ej δj = ξ, ∑2dξ

j=1 δj = 1
}

. Thus, as per the

above developments, the following inequality holds:

E[Q(x, ξ)] ≤ max
δ∈D(ξ)

Eδ [Q(x, e)]. (2-10)

Existing partition-based methods used the derived the upper bound
(2-10) for a first-stage decision found by the lower bound problem (2-5). So,
supposing that xL

n is the solution of (2-5), in [4, 7, 12] the following upper
bound is proposed:

z∗ ≤ f U
n (xL

n) := c>xL
n +

n

∑
k=1

pk max
δ∈D(ξk

)

2dξ

∑
j=1

δk
j Q(xL

n, ek
j )

 , (2-11)
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where,
Q(xL

n, ek
j ) :=min

y≥0
q>y

s.t. Wy = H(xL
n)e

k
j + r(xL

n),
(2-12)

for all j = 1, . . . , 2dξ and k = 1, . . . , n.
The existing partition-based method is summarized in the following

pseudo-algorithm:

Algorithm 1 Existing partition-based methods
Require: P1 = {Ξ}, ε > 0 stopping criteria.

Ensure: xL
n the optimistic solution of the lower bound problem.

1: Solve (2-5) to determine the optimal solution xL
n .

2: Evaluate xL
n in the recourse problem (2-12) for j = 1, . . . , 2dξ , and k = 1, . . . , n,

to get an upper bound for the optimal objective value of (2-3), according to Eq.

(2-11).

3: if f U
n (xL

n)−zL
n

f U
n (xL

n)
≤ ε then

4: stop and return xL
n as the optimal solution.

5: else
6: refine the partition Pn to Pn+1 and return to 1

7: end if

The existing partition-based methods are based on the optimistic
lower bound problem, as it underestimates the recourse cost by relying
only on the partition-adapted conditional means within the recourse
function assessment. Nevertheless, optimistic solutions can generate high
disappointment levels when they are evaluated for adverse scenarios of the
realization of the uncertainty as shown in Section 2.9.1 of the computational
experiments. However, as it is pointed by [17], conservative solutions
obtained by solving distributionally robust optimization problems avoid out-
of-sample disappointments that quantify the risk that the actual expected
cost of the candidate decision exceeds its predicted cost.

In this next section, we present a distributionally robust optimization
approach based on the first moment which is a new conservative solution
framework for two-stage stochastic linear optimization problems.

2.5
Proposed upper-bound problem reformulation

Motivated by the concept explored in [1], i.e., conservative solutions
obtained by solving distributionally robust optimization problems – under
certain conditions– avoid out-of-sample disappointments, our thrust is
to obtain pre-convergence conservative solutions in a computationally

DBD
PUC-Rio - Certificação Digital Nº 1712642/CA



Chapter 2. Moment-based distributionally robust optimization approach 22

efficient manner. For that, we develop in this section a deterministic
equivalent reformulation of the upper-bound (distributionally robust)
problem that is computationally tractable for low-dimensional uncertainty.
We propose a column-and-constraint (C&CG) generation algorithm for
medium-sized uncertainty dimensionality and, to handle high dimensional
uncertainty, we also propose a simplex-based heuristic method whose
complexity grows linearly with the uncertainty dimension. In the presence
of monotone recourse functions with regard to an uncertain parameter, we
prove convergence of the proposed simplex-based heuristic method. The
assumption of monotonicity of the recourse function is reasonable in light
of the fact that most real-world applications belong to this class of problem.
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2.5.1
Deterministic equivalent model for upper-bound problem

Following the upper approximation of the expected recourse function
(2-10), we define the upper-bound problem

zU
n := min

x∈X

{
f U
n (x) := c>x +

n

∑
k=1

pk max
δ∈D(ξk

)

Eδ [Q(x, ek)]

}
, (2-13)

where ek is the random vector whose support is the set of vertex of the
hypercube Ξk and D(ξk

) is the ambiguity set generated by the conditional
mean ξ

k
of the cell Ξk.

The solutions obtained from the upper-bound problem can be seen
as robust or conservative solutions. Note that problem (2-13) is a distri-
butionally robust optimization problem, where the conditional-probability
distribution within each cell is selected to represent the worst-case distribu-
tion preserving the conditional-average information of the cell [18]. Since the
upper-bound problem (2-13) overestimates the actual cost (2-3), the upper-
bound solution has a mathematical certificate against disappointment. This
is specially useful when non-converged solutions are actually implemented
owing to time or computational-power limitations.

However, solving the upper-bound problem to obtain the conservative
solution xU

n requires significant computational effort. The number of
variables of the inner problem grows exponentially with the uncertainty
dimension. In this work, we propose a new framework to obtain a
conservative solution by solving the upper-bound problem. To the best
of our knowledge, no existing partition-based method optimizes the upper
bound problem.

For a given cell Ξk of the rectangular partition, the upper-bound for
the conditional-expected recourse cost (2-9) can be recast according to its
dual formulation as follows:

max
δ∈D(ξk

)

Eδ [Q(x, ek)] =min
π, ηk

π + [ηk]>ξ
k

s.t. π + [ηk]>ek
j ≥ Q(x, ek

j ), j = 1, . . . , 2dξ .
(2-14)

where πk ∈ R and ηk ∈ Rdξ be the dual variables associated with the first
and second linear constraints of (2-9), respectively.

Replacing the worst-case conditional-expected recourse cost of (2-13)
with its dual formulation (2-14), the upper-bound problem (2-13) can be
recast as the following linear optimization problem:
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min
πk, ηk, x

c>x +
n

∑
k=1

pk(πk + [ηk]>ξ
k
)

s.t. πk + [ηk]>ek
j ≥ Q(x, ek

j ), j = 1, . . . , 2dξ , k = 1, . . . , n

x ∈ X.

(2-15)

Since the recourse function is a minimization problem, we are able to
obtain the deterministic equivalent

min
πk, ηk, x, y

c>x +
n

∑
k=1

pk(πk + [ηk]>ξ
k
)

s.t. πk + [ηk]>ξ
k ≥ q>y

ξ
k

Wy
ξ

k = H(x)ξ
k
+ r(x)

πk + [ηk]>ek
j ≥ q>yk

j

Wyk
j = H(x)ek

j + r(x)

 ∀j ∈ Jk


∀k = 1, . . . , n

x ∈ X.

(2-16)

which is an equivalent formulation of the original problem (2-15) whenever
Jk comprises all vertices of cell Ξk. This equivalent formulation consists
in replacing the recourse function by the second-stage objective function,
including all second stage decisions as variables and adding all second
stage feasibility constraints. Indeed, if the left-hand-side (LHS) of the first
block of constraints is greater than or equal to the second stage cost of a
feasible second-stage solution, then the LHS is greater than or equal to the
minimum second stage cost given by the recourse function.

Note for instance that (2-16) is a linear programming problem when-
ever X is a polyhedral set and can be efficiently solved whenever for prob-
lems with low dimension uncertainty vector. However, problem (2-16) is in
general an intractable problem for medium- and large-scale instances as
it relies on an exponential set of constraints. To handle this challenge, we
present two acceleration procedures: 1) an exact decomposition approach
based on the column and constraint generation algorithm [13] to solve
medium-dimensional problems and 2) an heuristic procedure for high-
dimensional uncertainty based on a simplex-based heuristic method using
a circumscribed simplex for each partition cell. For the latter, we prove
convergence whenever the recourse function over the uncertainty dimension
is monotone.
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2.6
Proposed conservative partition refining (CPR) method for two-stage
stochastic programming

In this section, we present a new conservative solution framework for
two-stage stochastic linear optimization problems that solves the upper-
bound problem. The aim is to obtain a conservative solution that avoids
disappointment, i.e., the objective function cost estimate is the upper limit
for the actual expected cost. We propose a tractable reformulation, namely
the deterministic equivalent model, for the upper-bound problem and
prove convergence of the proposed methodology. We developed a simple
and efficient partition refinement algorithm based on the structure of the
optimality gap of each iteration.

We start from a sequential procedure to split the uncertainty support
to obtain a refined partition. For iteration n and partition Pn, we solve the
upper-bound problem (2-15) and obtain the conservative solution xU

n . Then,
we solve the lower-bound problem for the same partition Pn and compute
the optimality GAP – the difference of the optimal values of the upper-
and lower-bound problems. The proposed CPR method is outlined in the
following pseudo-algorithm:

Algorithm 2 The CPR method
Require: P1 = {Ξ}, ε > 0 stopping criteria.
Ensure: xU

n the conservative solution of the upper bound problem.
1: Solve (2-15) to determine the optimal solution xU

n and the optimal objective
value zU

n of the upper bound problem for the partition Pn.
2: Solve (2-5) to determine the optimal objective value zL

n of the lower bound
problem for the partition Pn.

3: if zU
n −zL

n
zU

n
≤ ε then

4: stop and return xU
n as the optimal solution.

5: else
6: refine the partition Pn to Pn+1 and return to 1
7: end if

The convergence of the CPR method is ensured by the Theorem 1,
whose proof is presented in the Appendix A.1. It states that the sequence
of optimal solutions and objective values of the lower- and upper-bound
problems converges to the optimal solution x∗ and the optimal objective
value z∗ of the two-stage stochastic optimization problem (2-1), respectively.
Note that the proof of the convergence does not depend on the refinement-
partition procedure, however, the choosing of this procedure could enhance
the velocity of convergence.
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Theorem 1. :

1.1 The optimal objective value sequence {zU
n }∞

n=1 corresponds to conservative
solutions given by the upper bound problem, for a family of partitions
{Pn}∞

n=1 such that Pn+1 refines Pn, is non-increasing.

1.2 The optimal objective value sequence {zL
n}∞

n=1 corresponds to optimistic
solutions given by the lower bound problem, for a family of partitions
{Pn}∞

n=1 such that Pn+1 refines Pn, is non-decreasing.

1.3 We have that the sequences {zU
n }∞

n=1 and {zL
n}∞

n=1 are convergent, i.e.,
zL

n −→ z∗ ←− zU
n , as n −→ ∞. Also the sequence {xU

n }∞
n=1 and {xL

n}∞
n=1

converge to x∗ ∈ arg minx∈X f (x).

It is worth mentioning that the upper bound sequence obtained
by computing the objective function of the upper-bound problem at the
optimistic solution defines a non-increasing sequence. This fact ensures
the convergence of the existing partition-based method. However, the
optimistic solution is sub-optimal for the upper-bound problem, so the
existing partition-based method derives an upper bound less tight.

Next, we propose a simple and efficient partition refinement algorithm
that defines the sequential upper- and lower-bounds and, consequently,
generates the sequence of conservative solutions {xU

n }∞
n=1.

2.7
Accelerating methods for the moment-based approach

In this section, we present two accelerating methods for the distribu-
tionally robust optimization approach based on the first moment. These
methods are proposed regarding the dimensionality. For problems with the
medium-size uncertainty dimensionality a column and constraint generation
algorithm is proposed. For problems with a high-dimensional uncertainty
we propose a simplex-based heuristic method based on the extension of the
uncertainty support.

2.7.1
Column and constraint generation algorithm for the moment-based ap-
proach

For problems with medium-sized uncertainty dimension, we adapted
the column and constraint generation framework to iteratively identify a
subset of constraints that ensures feasibility to the original problem. The
goal of this algorithm is to obtain an equivalent formulation of (2-15) with
significantly fewer constraints and variables.
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According to [13], the column and constraint generation procedure is
implemented in a master-oracle scheme. In our context, the master problem
is a relaxation of an equivalent formulation of the original problem (2-15).
Given the solution of the master (relaxed) problem, the oracle finds the
vertex that generates the worst infeasibility and adds the associated block of
linear constraints and decision variables to the master problem. This iterative
procedure stops whenever the oracle asserts that the master solution is
feasible for the original problem.

For the initial iteration ` = 0 of the column-and-constraint algorithm,
we start with an empty set Jk = ∅ of constraints, i.e., the initial master
problem is a relaxation of (2-16). For initialization purposes, we also add a
block of constraints associated with the conditional expectation ξ

k
adapted

to cell Ξk. This additional constraint does not affect the original feasible
set since it can be represented as an weighted average of all constraints
associated to each vertex.

For a given iteration m, with an updated set Jk, we solve (2-16) and
obtain a candidate solution (π∗m, η∗m, x∗m). Then, we solve the oracle problem

ORACLE : ϑ∗ = max
j
{Q(x∗m, ek

j )− π∗m − [η∗m]
>ek

j }, (2-17)

to find the highest constraint violation given the current solution. To
efficiently solve the oracle problem, we replace the recourse function by its
dual representation and combine them in a single maximization problem

max
j, θ

θ>(H(x∗m)e
k
j + r(x∗m))− π∗ − [η∗m]

>ek
j

s.t. W>θ ≤ q.
(2-18)

Following [19], we avoid solving (2-18) by enumeration of vertices {ek
j : j =

1, . . . , 2dξ} of the cell Ξk by introducing binary variables to represent each
vertex and transform (2-18) into a MILP equivalent formulation presented in
details in Appendix A.2. The algorithm stops whenever the oracle optimal
value is non-negative, i.e., the current solution (π∗m+1, η∗m+1, x∗m+1) is feasible
for the original problem. If the oracle optimal value is positive, then update
the set Jk including the oracle solution i∗ and repeat the process solving
again the master problem.

We summarize the proposed column and constraint generation algo-
rithm in the following pseudo-algorithm:.
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Algorithm 3 Column and Constraint Generation framework

Require: ξ
k
, m = 0, set Jk := ∅ of the constraints generated by the vertices of the

cell Ξk.

Ensure: xU
n the conservative solution of the upper bound problem.

1: Initialization. Solve the problem (2-16) to derive an optimal solution. (π∗0 , η∗0 , x∗0)
with Jk := ∅.

2: Maximize infeasibility. Find j∗ as the optimal solution of (2-17).

3: if ϑ∗ ≤ 0 then
4: return x∗m = xU

n as the optimal solution.

5: else
6: Update m = m + 1. Do Jk ∪ {j∗} and go to the next step

7: end if
8: Update (π∗m+1, η∗m+1, x∗m+1) as the optimal solution of the master problem (2-16)

and go to 2.

2.7.2
Simplex-based heuristic method to handle high-dimensional uncertainty

There are some instances of high dimensional uncertainty that make
the column and constraint generation computationally intractable. Thus, it
is necessary to appeal to an alternative solution method to obtain an upper
bound and corresponding conservative solution.

To handle high dimensional uncertainty, we propose a heuristic
solution method that extends the original box uncertainty support to a
circumscribed simplex polyhedral where the number of vertexes depends
linearly on the uncertainty dimension. Under the extended support, we
reformulate (2-14) to obtain an upper-bound problem whose complexity
grows linearly with the uncertainty dimension.

The proposed extension is the minimum volume simplex that contains
the original cell (see Fig. 2.1) and one selected vertex ξ̂

k
coinciding with the

cell’s vertexes. This simplex has the property that the length of the edges
that contain the original vertex ξ̂ is equal to the sum of the length of the
projection of the original support along to each dimension, respectively.

For example in Fig. 2.1, it is represented the extension of the support
[a1, b1]× [a2, b2] by the simplex represented in green. We considered two
possibilities {(a1, a2), (b1, b2)} for the original vertex ξ̂

k
, indicated by the

black point, that corresponds to the extreme events of the realization of the
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(a) (b)

Figure 2.1: The blue region in the figure corresponds to the original support
[a1, b1]× [a2, b2], and the simplex, represented in green, is its extension. The
vertex in black denotes the selected ξ̂ of the realization of the uncertainty
for the recourse and the point highlighted at the middle indicates the mean.
(a) ξ̂ = (b1, b2); (b) ξ̂ = (a1, a2)

uncertainty. In both cases, the length of the edges of the simplex that contain
the vertex ξ̂ ∈ {(a1, a2), (b1, b2)} is equal to (b1− a1) + (b2− a2), the sum of
dimensions. We use this property as a simple rule to create the simplex.

The proposed simplex-based heuristic method solves the sequential
partition refinement problem by considering the extension of each cell of the
partition. Based on the extension of cell Ξk, problem (2-14) can be rewritten
as follows:

max
δ∈R(ξk

)

Eδ [Q(x, vk)] :=min
π, η

π + η>ξ
k

s.t. π + η>vk
j ≥ Q(x, vk

j ), j = 1, . . . , (dξ + 1),
(2-19)

where R(ξk
) =

{
δk

j ∈ Rdξ+1 : ∑
dξ+1
j=1 δk

j vk
j = ξ

k
, ∑

dξ+1
j=1 δk

j = 1
}

, vk is a

random vector with support in the set {vk
j : j = 1, . . . , dξ + 1} of vertexes

of the simplex that contains the cell Ξk and vk
1 := ξ̂

k
is the original vertex

of the hypercube Ξk. Note that the vertex vk
j for j = 2, . . . , (dξ + 1) different

from ξ̂
k

in just one component according to the construction of the simplex
that contains the hypercube Ξk. That said, we propose the simplex-based
heuristic problem

z̃U
n := min

πk, ηk, x
c>x +

n

∑
k=1

pk(πk + [ηk]>ξ
k
)

s.t. πk + [ηk]>vk
j ≥ Q(x, vk

j ), j = 1, . . . , (dξ + 1), k = 1, . . . , n

x ∈ X.
(2-20)

Note that the number of blocks of linear constraints of the problem
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(2-20) is n · (dξ + 1), i.e., it depends linearly on the uncertainty dimension.
With this alternative upper-bound problem we can solve the sequential
partition refinement problem described in Algorithm 2 solving (2-20) instead
(2-15).

In particular, we proof convergence of the partition refinement problem
using the simplex-based heuristic method if we will assume that the recourse
function Q(x, ·) is monotone over the uncertainty vector ξ ∈ Ξ, and the
selected original vertex ξ̂

k
of the hypercube Ξk is the worst-case of the

recourse, i.e., ξ̂
k ∈ arg max

ξ∈Ξk
Q(x, ξ) for any x ∈ X.

Proposition 1. Let Q(x, ξi) be a monotonic function of ξi, for all i = 1, . . . , dξ .

Assuming that, for any x, ξ̂
k ∈ arg maxξ∈Ξk Q(x, ξ) generates the worst-case

recourse cost given the cell Ξk. Then, the sequences {z̃U
n }∞

n=1 and {x̃U
n }∞

n=1 converge
to the optimal objective value and optimal solution of (2-1), respectively, where x̃U

n

is the optimal solution of (2-20).

The proof of Proposition1 is presented in the Appendix A.3.

(a) (b1)

(b2)

Figure 2.2: (a) Extension of original support [a1, b1]× [a2, b2] for newsvendor
problem for two items; (b1) and (b2) The extension of the chosen cell
(highlighted in blue) in the refinement procedure is the same as that of
original support for different partition sizes.

Note that a reformulation similar to (2-16) can be obtained by just
considering Jk as the number of vertexes of the circumscribed simplex. For
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a polyhedral set X, this reformulation is a linear programming problem
whose complexity grows linearly with the uncertainty vector dimension.

2.8
Solution algorithm with worst-case partition refinement (SAWPR)

Any partition-based method is supported on the refinement procedure
of the partition to improve the upper and lower approximations. Next, we
detail the three basic steps of the proposed partition refining procedure
as (i) selection of the cell Ξk∗ to be split, (ii) selection of the uncertainty
dimension i∗ ∈ {1, . . . , dξ} to refine the partition, and (iii) selection of the
cutting point.

In the first step of the partition refinement procedure, we aim to
select the cell with the highest contribution to the current optimality gap,
which is composed of the difference of upper and lower approximations
of the expected recourse function. Given that the partition influences the
gap through the expected recourse function, we select the cell with the
maximum contribution to the difference of upper and lower approximations
of the expected recourse function. Let us define the selected cell as

k∗ ∈ arg max
k

{
pk

(
max

ξ∈D(ξk
)

Eδ [Q(xU
n , ek)]−Q(xL

n, ξ
k
)

)}
. (2-21)

The second step of the partition refinement procedure is the selection
of the uncertainty direction. Most existing partition-based methods consider
the direction with the highest metric of non-linearity of Q(x, ·) as the optimal
direction to split the optimal cell to refine the partition. This is motivated
by the fact the lower and upper approximations coincide for an affine
function. Initially, [18] proposed to use dual (subgradient) information at
the endpoints of the cell, while [4] compares the difference between the
upper and lower approximations. However, the use of dual information
increases the computational burden of the sequential partition refinement
problem.

In this work, we selected the uncertainty direction by solving an
optimization problem that resembles the robust optimization model with an
uncertainty budget proposed by [20]. For the selected cell k∗, we formulated
an adversary problem in (2-22) that aimed to find the uncertainty realization
with the highest cost for the optimistic solution given by the lower-bound
problem. The intent was to select the dimension where the conditional mean
was less representative of the entire conditional distribution adapted to that
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cell. We imposed a unitary budget constraint, i.e., only one component of the
random vector is allowed to change around its nominal value (conditional
mean). Hence, we selected the uncertainty dimension i∗ such that ξ̂i∗ 6= ξ̄k

i∗ ,
where

ξ̂ ∈ arg max
ξ, z

Q(xL
n, ξ)

s.t. ξ
k
i − zi(ξ

k
i − ak

i ) ≤ ξi ∀i,

ξi ≤ ξ
k
i + zi(bk

i − ξ
k
i ) ∀i,

dξ

∑
i=1

zi ≤ 1,

0 ≤ zi ≤ 1 ∀i.

(2-22)

Since (2-22) is a maximization problem with a convex objective function
and the feasible set is a polyhedron, there is a vertex that is optimal. By
construction, the number of vertices of the feasible polyhedral is 2 dξ , i.e.,
grows linearly on the uncertainty dimension. Thus, to efficiently solve
(2-22) it suffices to enumerate the vertices and cast the one with the highest
recourse cost.

Note also that the vertices are intuitive and easily identifiable since
they are defined as the conditional mean ξ

k
projected on the faces of the

hypercube Ξk. To illustrate this concept, let us consider Ξ =
�3

i=1[a
k
i , bk

i ] (see
Fig. 2.3) and a given optimistic solution xL

n. A unitary uncertainty budget
leads to a “diamond” shaped polyhedral inscribed in the hypercube Ξk. In
other words, the vertices of the feasible set differ from the center (conditional
mean ξ

k
) in just one component i, which can assume any extreme value

{ak
i , bk

i }. Therefore, the number of vertexes is 2 dξ .

Figure 2.3: Ambiguity set representing the feasible region of the problem
(2-22) for the case dξ = 3

The third and last step of the partition refinement procedure is the
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selection of the cutting point. For simplicity and computational efficiency,
we assumed that the cutting point is the component of the conditional mean
ξ̄i∗ along to the uncertainty dimension i∗ the same as [18, 21].

Finally, we summarize the proposed partition refinement procedure,
namely, solution algorithm with worst-case partition refinement (SAWPR)
as follows:

Algorithm 4 SAWPR
Require: x∗ optimal solution of (2-13)

Ensure: Ξk∗ and Ξn+1

1: Determine k∗ the optimal cell to be split as the cell with the largest error

contribution given by (2-21).

2: Find i∗ as the component ξ̂i∗ of the optimal solution ξ̂ of (2-22) such that

ξ̂i∗ 6= ξ̄k
i∗ .

3: Ξk∗ ⇐= [ak∗
i∗ , ξ̄k∗

i∗ ]×
�

{1,2,...,dξ}\{i∗}
[ak∗

t , bk∗
t ]

4: Ξn+1 ⇐= [ξ̄k∗
i∗ , bk∗

i∗ ]×
�

{1,2,...,dξ}\{i∗}
[ak∗

t , bk∗
t ]

In Fig. 2.4 we present the refinement procedure for the farmer problem
instance for three types of crops as an illustrative example of the SAWPR
algorithm. Note that the cells of the partition are clustered around the
region of the uncertainty support corresponding to scenarios of less land
productivity which represents in particular, the worst-case for this instance.
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SAWPR for the Farmer Problem

(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Partition of the support Ξ =
�3

i=1[a
k
i , bk

i ] with: (a) 4 cells, (b) 20
cells, (c) 100 cells, (d) 300 cells, (e) 500 cells, and (f) 900 cells. The shaded
region shows the chosen cell and the red edges show the direction chosen
to refine the partition.

2.9
Empirical study for the moment-based approach

We present an empirical study of the CPR method using of the two
acceleration approaches (column and constraint generation method and the
propose simplex-based heuristic method of the extension of the uncertainty
support), applied to an aircraft allocation problem [22] and several instances
of the farmer problem [18] for different quantities of cultivated crops, which
are cost-minimizing problems belonging to the problem class for which the
method was designed.

For the first application, different types of aircraft must be allocated to
a certain route for the transportation of passengers. The number of allocated
aircraft is the first-stage decision, and the recourse of the problem is defined
by the number of bumped passengers when demand for seats outstrips
capacity. The right-hand side uncertainty corresponds to the unknown
demand of passengers modeled by a uniform probability distribution. For
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this problem, the dimension of the uncertainty is 5, the number of first-stage
variables was 21, and the number of second stage-variables is 10 for each
uncertainty realization.

Regarding the second application, the farmer problem is an example
of a production model under uncertainty where the first-stage decisions
correspond to the land allocation destined to rise different types of crops,
and the recourse consists in trading the cultivated products in the local
market to satisfy a given supply. In this problem, we assume a uniform
probability distribution to model the uncertainty in the land productivity
for growing each crop. The number of first-stage variables is equal to the
uncertainty dimension, since they correspond to the land allocation to
cultivate each type of crop while the number of second-stage variables for
each uncertainty realization is twice the quantity of cultivated products
because they correspond to the sold and buy quantities of each crop in the
local market.

To generate different instances of the farmer problem, we varied the
uncertainty dimension considering eight and 20 types of crops to create a
computational experiment for each of the following situations:

– It is impossible to solve in reasonable time the deterministic equivalent
linear model for the enumerative case considering the 2dξ vertexes of
the hypercubes of the rectangular partition, but it is possible to handle
the medium-sized uncertainty dimensionality with the proposed
column and constraint generation algorithm.

– It is impossible to obtain a conservative solution solving the re-
formulated upper-bound problem using the column and constraint
generation algorithm, and it is necessary to appeal to a heuristic
solution method.

For both applications, the refinement algorithm and the algorithm
for the sequential partition-based method is implemented in JuMP [23], a
modeling language for mathematical optimization embedded in the Julia
programming language and Gurobi was used as the linear optimization
solver to run the computational experiments on a Intel Core i7, 4.0-GHz
processor with 32 GB of RAM.

2.9.1
Computational results for the moment-based approach

In general, the optimal solutions of the upper-bound problem of
both the CPR method solved by the column and constraint generation
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algorithm and the simplex-based heuristic method of the extension of the
uncertainty support represents a conservative decision policy. Indeed, these
solutions are obtained from the approximation of the conditional expectation
E[Q(x, ξ)|ξ ∈ Ξk] by the worst distributionally expectation

max
δ∈D(ξk

)

Eδ [Q(x, ek)]

and
max

δ∈R(ξk
)

Eδ [Q(x, vk)],

considering the marginal distribution of the random vectors ek and vk

with support in the set {ek
j : j = 1, . . . , 2dξ} and {vk

j : j = 1, . . . , dξ + 1},
respectively, for all k = 1, . . . , n.

(a)

(b)

Figure 2.5: Disappointment in out-of-sample analysis for aircraft allocation
problem: (a) low recourse cost; (b) high recourse cost.

As mentioned above, the existing partition-based method do not solve
the upper-bound problem, instead, it determines the optimistic solution xL

n

given by the lower-bound problem. Nevertheless, depending on the recourse
cost, sometimes it is necessary to obtain a conservative solution because
the optimistic solution generates a significant disappointment. To study
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the disappointment of a given conservative and optimistic solution in an
out-of-sample analysis, we performed a Monte Carlo simulation with a
number N of scenarios to estimate the actual cost by the sample-average
cost [24].

For the aircraft allocation problem, we consider two instances: (a)
low recourse cost; (b) high recourse cost. For the low recourse cost, we
consider a negligible cost for unattended demand. For the high recourse
cost, we consider a significantly high deficit cost associated with unattended
demand. Given these two instances, we depict in Fig. 2.5 the disappointment
by confronting the out-of-sample cost against the cost estimate given by
objective value of the upper (conservative) and lower (optimistic) bound
problems. For didactic purposes, the results associated with the optimistic
solution are presented in red while the results for the conservative solution
are presented in blue. For each partition size, the cost estimate given by
optimal values of the upper and lower objective values are represented by the
dashed lines. The solid line corresponds to the out-of-sample cost evaluation
and the shaded area corresponds to the associated 95% confidence interval.

For the a low recourse cost instance, Fig. 2.5 (a), we observe that
both (conservative and optimistic) solutions have similar out-of-sample
performances. However, for the high recourse cost instance, Fig. 2.5 (b),
the conservative solution out-performs the optimistic one for any partition
size. Note also that, for both instances, the optimistic solution leads to
significant disappointment–the out-of-sample cost evaluation is significantly
higher than the cost estimate given by the optimal value of the lower bound
problem. On the other hand, the conservative solution has a mathematical
guarantee against disappointment, which is corroborated by this empirical
study–there is no statistically significant disappointment. This means that
optimistic solution methods might not be suitable for applications with high
recourse cost due to poor out-of-sample performance and potentially high
disappointment levels.

In Fig. 2.6, we present the numerical results for the farmer problem
with eight crops considering an high recourse cost instance. The out-of-
sample evaluation of the conservative solution shows a very similar behavior
when compared to the optimal objective value of the upper-bound problem.
Conversely, the out-of-sample cost evaluation for the optimistic solution is
significantly higher than the optimal objective value, i.e., it shows a high
disappointment level. Moreover, the conservative solution significantly out-
performs the optimistic one in an out-of-sample analysis. It is important to
note that the above mentioned effects are amplified whenever the algorithm
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Figure 2.6: Disappointment in out-of-sample analysis of the conservative
solution and optimistic solution of the farmer problem with eight crops.

is far from converging.
This result alerts us to use of the optimistic solution for two-stage

stochastic linear programming problems when the recourse cost is sig-
nificantly high. If the method stops before convergence–due to time or
computational-power limitations–the optimistic solution is not reliable given
its poor out-of-sample performance and high disappointment level. On the
other hand, the conservative decision is robust even for non-converged
solutions.

Finally, Fig. 2.7 presents the numerical results for the farmer problem
with 20 crops obtained by the simplex-based heuristic method of the exten-
sion of the uncertainty support, considering an high recourse cost. As in the
upper-bound problem (2-15), solved by the column and constraint genera-
tion algorithm, the solution given by the simplex-based heuristic method
(2-20) also avoids disappointments and significantly out-perform the opti-
mistic solution. As before, the non-converged optimistic solution presented
a significant disappointment and poor out-of-sample performance.
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Figure 2.7: Upper bound and lower bound obtained by the simplex-based
heuristic method of the extension of the uncertainty support for the farmer
problem with 20 crops.
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3
Distributionally robust optimization approach based on the
Wasserstein metric

Distributionally Robust Optimization (DRO) is a mathematical frame-
work to incorporate ambiguity in the characterization of the true data-
generating distribution. In general, this approach considers an ambiguity
set P to evaluate the worst-case for the expectation EP̃[Q(x, ξ)] over all
probability distributions1 P̃ ∈ P . Then, for a DRO minimization problem,
the optimal decision x ∈ X is the one that minimizes the highest expected
cost EP̃[Q(x, ξ)] over all P̃ ∈ P .

Research on DRO models—formulations, algorithms and applications—
has grown enormously in the past few years; a recent survey can be found
in [25]. One particular setting that has received considerable attention in the
literature is when the ambiguity set P is defined as the set of distributions
that are not “too far” from some reference distribution. Of course, such
a notion requires defining an appropriate way to measure the distance
between distributions. While there are multiple ways to measure such
distance, the Wasserstein distance has been popular due do its theoretical
properties and practical performance. The thrust of the two-stage data-driven
DRO with Wasserstein metric (DD-DRO-W) framework is to center the
ambiguity set on the empirical distribution corresponding to the data and
to set a radius around it to enclose the true data-generating distribution
with a high confidence level [14]. The data-driven Wasserstein distance has
been widely used in DRO partly because the associate ambiguity set collects
both discrete and continuous probability distributions, even though the
Wasserstein ball is centered around the empirical discrete distribution.

Despite their practical appeal, DD-DRO-W problems are hard to solve,
but specific characteristics can be explored for computational tractability.
For instance, by considering a compact support set for the uncertainty,
[26] presents a finite-dimensional non-convex reformulation of the worst-
case expectation problem, which has high computational burden and no
global optimality guarantee. For a continuous data-generating distribution

1We use the notation EP̃[·] to emphasize that the expectation is taken over the probability
distribution P̃.
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supported on a polyhedron, [27] presents a semi-infinite linear reformulation
of a two-stage distributionally robust unit commitment problem for the
integration of renewable energy over the data-driven Wasserstein ball.
An exact decomposition scheme is proposed by [28], but considering an
ambiguity set with only discrete probability distributions. In [29], the
authors present a general conic programming reformulation for a two-
stage distributionally robust optimization problem with Wasserstein-based
ambiguity set. Particularly, for linear programming problems with right-
hand-sided uncertainty, the authors present a tractable reformulation for
the case of unbounded uncertainty supports, an unsuited assumption for
a large range of applications. By assuming a compact support set for the
uncertainty, [14] present tractable reformulations for a number of cases,
except for linear programming problems with right-hand-sided uncertainty.
For this case, the resulting reformulation requires pre-computing all dual
vertices of the recourse problem, but such number grows exponentially with
the size of the problem.

In this context, we study decomposition methods applied to two-stage
DD-DRO-W with right-hand-sided uncertainty and rectangular support. As
an alternative to the proposed dual vertex enumeration in [14], in Section
3.4, we propose a novel finite reformulation that explores the rectangular
uncertainty support. We develop an exact decomposition (oracle-master)
scheme based on the Column-and-Constraint Generation (C&CG) method.
Moreover, by considering variations of the proposed scheme, we derive
two other alternative decomposition methods, namely, Multi-cut Benders
and Single-cut Benders. Whereas Benders’ methods consider a local linear
approximation of the recourse function for a given scenario, the C&CG
method tends to converge faster since co-optimizes first-stage and the
recourse for the uncertainty realizations selected by the oracle problem.

It is important to mention that just prior to the submission of this
paper we came across a paper by [30]—which was developed independently
of our work and very recently made available online—which solves a
similar but different class of problems. Unlike our framework that considers
all problems with uncertainty (with rectangular support) on the right-
hand side, the authors do not allow randomness in the technology matrix,
i.e., the matrix multiplying the first stage variable. On the other hand,
[30] consider problems in which the uncertainty has either bounded or
unbounded support. They provide a master-oracle scheme that resembles
our Benders Multi-cut method with a similar master but with a different
MILP oracle reformulation, where the uncertain parameter does not appear
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as a coefficient of the first-stage variable. Also, [30] do not propose an
algorithm similar to C&CG which turns out to be the most efficient in our
numerical experiments.

We compare the proposed C&CG method with two variants of the
Benders algorithm applied to the newly proposed finite reformulation.
Furthermore, we also compare the proposed methods with the existing
formulation provided in [14] using the vertex enumeration algorithm
available in [31, 32] and the decomposition method presented in [28]. To do
that, we present results for the unit commitment problem with 5, 14, and 54
thermal generators over a 24-hour uncertainty dimension.

3.1
Theoretical background for the Wasserstein-metric-based approach

In this section, we provide a brief review of elementary notions of
convex analysis and present the definition of the Wasserstein metric.

3.1.1
Dual norm

Let ‖ · ‖ be a norm on Rd. The associated dual norm denoted by ‖ · ‖∗,
is defined as

‖x‖∗ := sup
y
{y>x : ‖y‖ ≤ 1}.

By the Hölder’s inequality it holds that the dual of the `p-norm is the
`q-norm, where q satisfies 1

p +
1
q = 1. Particularly, the dual of the `1-norm

(i.e., ‖x‖ = ∑d
i=1 |xi|) is the `∞-norm (i.e., ‖x‖ = maxi≤d |xi|). Another basic

property that will be useful later is that identity ‖x‖ = ‖x‖∗∗ holds for all
x ∈ Rd.

3.1.2
Wasserstein metric

The Wasserstein metric is a probability distance that measures the
separation between probability distributions. This metric is defined on
the space M(Ξ) of probability distributions P supported on Ξ with
EP[‖ξ‖] < ∞.

Definition 2. (Wasserstein metric [33]) The Wasserstein metric dw : M(Ξ)×
M(Ξ) −→ R+ is defined via
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dw(P, P′) := inf
Π

{∫
Ξ2
‖ξ − ξ′‖Π(dξ, dξ′) :

Π is a join distribution of ξ and ξ′

with marginals P and P′, respectively

}
(3-1)

for all distributions P, P′ ∈ M(Ξ), where ‖ · ‖ represents an arbitrary norm on
Rdξ .

According to [1], the decision variable Π in (3-1) can be viewed as a
transportation plan for moving a probability mass described by distribution
P to another one described by P′ (see Fig. 3.1).

Figure 3.1: Wasserstein distance as a transportation problem, adapted from
[1].

In the case of two discrete probability distributions P = {pi}m
i=1 and

P′ = {p′j}n
j=1, the resulting problem (3-1) is a linear program given by

min
πij

m

∑
i=1

n

∑
j=1
‖ξi − ξ′j‖πij

s.t.
m

∑
i=1

πij = p′j, ∀j = 1, . . . , n,

n

∑
j=1

πij = pi, ∀i = 1, . . . , m,

which is an easy problem since linear programming is a dominated
technology. In the case of a continuous probability distribution P and a
discrete probability distribution P′ = {p′j}n

j=1, the resulting problem (3-1) is
the following infinite optimization program:
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inf
Π∈M(Ξ2)

n

∑
j=1

∫
Ξ
‖ξ − ξ′j‖Π(dξ, ξ j)

s.t.
∫

Ξ
Π(dξ, ξ′j) = pj, ∀j = 1, . . . , n,

n

∑
j=1

Π(dξ, ξ j) = P(dξ), , ∀ξ ∈ Ξ,

which is a hard complex problem. In general, computing the Wasserstein
distance when both probability distributions are not finite is #P-hard
(see [34]). As we will see in the next section, the DRO problem over the
Wasserstein ball has a convex reduction that reduces to a linear program by
considering the `1-norm or `∞-norm.

3.2
Distributionally robust optimization over Wasserstein ambiguity sets

Distributionally Robust Optimization (DRO) is a mathematical frame-
work to incorporate ambiguity in the characterization of the true data-
generating distribution. In general, this approach considers an ambiguity
set P to evaluate the worst-case for the expectation EP̃[Q(x, ξ)] over all
probability distributions2 P̃ ∈ P . Then, for a DRO minimization problem,
the optimal decision x ∈ X is the one that minimizes the highest expected
cost EP̃[Q(x, ξ)] over all P̃ ∈ P .

Research on DRO models—formulations, algorithms and applications—
has grown enormously in the past few years; a recent survey can be found
in [25]. One particular setting that has received considerable attention in the
literature is when the ambiguity set P is defined as the set of distributions
that are not “too far” from some reference distribution. Of course, such
a notion requires defining an appropriate way to measure the distance
between distributions. While there are multiple ways to measure such
distance, the Wasserstein distance has been popular due do its theoretical
properties and practical performance. The thrust of the two-stage data-driven
DRO with Wasserstein metric (DD-DRO-W) framework is to center the
ambiguity set on the empirical distribution corresponding to the data and
to set a radius around it to enclose the true data-generating distribution
with a high confidence level [14]. The data-driven Wasserstein distance has
been widely used in DRO partly because the associate ambiguity set collects
both discrete and continuous probability distributions, even though the
Wasserstein ball is centered around the empirical discrete distribution.

2We use the notation EP̃[·] to emphasize that the expectation is taken over the probability
distribution P̃.
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3.3
Problem statement

In this section, we introduce the data-driven Wasserstein-based am-
biguity set (Wasserstein ball). Next, we present the data-driven two-stage
distributionally robust optimization problem with right-hand-side uncer-
tainty and a Wasserstein-based ambiguity set.

3.3.1
Wasserstein-based ambiguity set

We assume that we can access a finite data-set of training samples
{ξ̂n}n≤N that are generated by the true (but unknown) probability distribu-
tion. We consider the reference distribution

P̂N =
1
N

N

∑
n=1

δ
ξ̂n

(3-2)

where 1
N is the probability mass of the point ξ̂n and δ

ξ̂n
denotes the Dirac’s

delta function that concentrates unit mass at ξ̂n.
For a given set Ξ ⊆ Rdξ , let M(Ξ) be the space of probability

distributions P̃ supported on Ξ such that EP̃[‖ξ‖] < ∞. For a given δ > 0,
the data-driven Wasserstein ball is defined by

Bδ(P̂N) = {P̃ ∈ M(Ξ) : dw(P̃, P̂N) ≤ δ} (3-3)

where dw(P̃, P̂N) denotes the Wasserstein distance between the probability
distribution P̃ ∈ M(Ξ) and the reference distribution P̂N

Even though computing the Wasserstein distance is generally #P-hard,
this metric is often used in Distributionally Robust Optimization (DRO)
because of its nice properties—in particular, the ambiguity set defined by the
Wasserstein distance (Wasserstein ball) contains all probability distributions
(continuous and discrete) whose Wasserstein distance to the reference
distribution P̂N is less or equal to δ.

By using the Wasserstein ball (3-3), the two-stage distributionally
robust optimization problem with right-hand-side uncertainty can be
defined as follows:

min
x∈X

c>x + sup
P̃∈Bδ(P̂N)

EP̃[Q(x, ξ)], (3-4)

We call henceforth the inner problem supP̃∈Bδ(P̂N) EP̃[Q(x, ξ)] as the
worst-case expectation problem.
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As shown in [14] and [35], if (3-4) is such that supξ∈Ξ |Q(x, ξ)| < ∞
for all x ∈ X, i.e., has relatively complete recourse with bounded recourse
value, then it is equivalent to the semi-infinite optimization problem

min
x,λ,sn

c>x + λδ +
1
N

N

∑
n=1

sn (3-5a)

s.t. Q(x, ξ)− λ‖ξ − ξ̂n‖ ≤ sn, ∀n ≤ N, ∀ξ ∈ Ξ (3-5b)

λ ≥ 0, (3-5c)

x ∈ X. (3-5d)

In the next section, by considering the primal `1-norm in (3-5b), we propose
a (finite) linear programming reformulation for the semi-infinite problem
(3-5) exploring the particular case of rectangular uncertainty support. We
argue that this development is also valid for the `∞-norm.

3.4
A new finite reformulation for a rectangular uncertainty support

In this section, we derive a finite reformulation for the semi-infinite
problem (3-5) by considering the `1-norm (or equivalently the `∞-norm). We
start by stating formally our assumptions:

Assumption 1. We assume that: (i) the second stage-problem belongs to the class
of parametric linear programs with right-hand-side uncertainty as in (2-2); (ii) the
set {y ∈ R

dy
+ : Wy = H(x)ξ + r(x)} is nonempty and the optimal value of (2-2)

is bounded for all x ∈ X and ξ ∈ Ξ, and (iii) the uncertainty support Ξ ⊆ Rdξ is a
hypercube, i.e., Ξ =

�dξ

i=1[ai, bi].

Within this framework, for any given x ∈ X, the constraint (3-5b) is
equivalent to

sup
ξ∈Ξ

(
Q(x, ξ)− λ‖ξ − ξ̂n‖1

)
≤ sn, ∀n ≤ N. (3-6)

By representing the norm with linear inequalities and considering
the dual formulation of Q(x, ξ), the left-hand side of constraint (3-6) is
equivalent to the following nonlinear optimization problem (with bilinear
term θ>ξ):
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sup
θ,α,ξ

θ>r(x) + [H>(x)θ]>ξ − λ1>α

s.t. α ≥ ξ − ξ̂n,

α ≥ ξ̂n − ξ,

W>θ ≤ q,

ξ ∈ Ξ.

(3-7)

(a)

(b)

Figure 3.2: Illustrative example of the optimal solution ξ∗ of (3-7) equals to
ξ̂n (a) and extreme point of the uncertainty support (b).

As illustrated by Fig. 3.2 and stated in Proposition 2, under Assump-
tion 1, for a given scenario ξ̂n, n ≤ N, the i-th component of the optimal
solution ξ∗ of the equivalent inner problem (3-7) is an extreme point of the
interval [ai, bi] or the i-th component of the nominal value (ξ̂n)i.

Proposition 2. Suppose Assumption 1 holds. Then, there exists an optimal solution
ξ∗ to (3-7) such that ξ∗i ∈ {(ξ̂n)i, ai, bi}, i = 1, . . . , dξ .

Proof . Consider the rightmost problem in (3-7), and write it as

sup
θ:W>θ≤q

θ>r(x) + J(θ)
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where
J(θ) := sup

α≥0
−λ1>α + V(θ, α), (3-8)

and V(θ, α) is given by
max
ξ∈Ξ

[H>(x)θ]>ξ

s.t. ξ ≤ ξ̂n + α,

ξ ≥ ξ̂n − α,

(3-9)

i.e.,
V(θ, α) = max

ξ∈Ξ
w(θ)>ξ − IC(ξ, α) (3-10)

where w(θ) := H>(x)θ, and IC(ξ, α) is the indicator function of the set

C := {(ξ, α) : |ξi − (ξ̂n)i| ≤ αi, i = 1, . . . , dξ}.

Since the set C is convex, it follows that −IC(ξ, α) is concave and therefore V(θ, α)

is concave in α. Moreover, it is easy to see that the problem in (3-10) can be
decomposed per coordinate ξi, i.e., V(θ, α) = ∑

dξ

i=1 Vi(θ, αi), where

Vi(θ, αi) = max {wi(θ)ξi : |ξi − (ξ̂n)i| ≤ αi, ξi ∈ [ai, bi]}. (3-11)

The solution to (3-11) is trivial to determine: if wi(θ) > 0, then ξ∗i (αi) =

min{bi, (ξ̂n)i + αi}; otherwise, ξ∗i (αi) = max{ai, (ξ̂n)i − αi}. It follows that the
function J(θ) defined in (3-8) can be decomposed as

J(θ) :=
dξ

∑
i=1

sup
αi≥0

−λαi + wi(θ)min{bi, (ξ̂n)i + αi} if wi(θ) > 0

−λαi + wi(θ)max{ai, (ξ̂n)i − αi} otherwise.
(3-12)

We see that, when wi(θ) > 0, the expression inside the sup in (3-12) is maximized
at αi = 0 if λ > wi(θ), and it is maximized at all values of αi ≥ bi − (ξ̂n)i if
λ ≤ wi(θ). Similarly, when wi(θ) ≤ 0, the expression inside the sup in (3-12)
is maximized at αi = 0 if λ > |wi(θ)|, and it is maximized at all values of
αi ≥ (ξ̂n)i − ai if λ ≤ |wi(θ)|. The value of J(θ) is then given by

J(θ) =
dξ

∑
i=1


−wi(θ)(ξ̂n)i if λ > |wi(θ)|

−λ(bi − (ξ̂n)i) + wi(θ)bi if λ ≤ |wi(θ)| and wi(θ) > 0

−λ((ξ̂n)i − ai) + wi(θ)ai if λ ≤ |wi(θ)| and wi(θ) ≤ 0

Moreover, by substituting the optimal values of αi found above into (3-11),
we conclude that an optimal solution to the maximization problem in (3-11) is
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given by 
ξ∗i = (ξ̂n)i if λ > |wi(θ)|

ξ∗i = bi if λ ≤ |wi(θ)| and wi(θ) > 0

ξ∗i = ai if λ ≤ |wi(θ)|) and wi(θ) ≤ 0.

That is, ξ∗i ∈ {(ξ̂n)i, ai, bi} regardless of the value of θ. We conclude that
there always exists an optimal solution ξ∗ to (3-7) such that ξ∗i ∈ {(ξ̂n)i, ai, bi},
i = 1, . . . , dξ .

Let us introduce the notation Ξ̂n =
�dξ

i=1{ai, (ξ̂n)i, bi} =
{

ξ∗`
}
`∈Ln

and Ln = {1, . . . , |Ξ̂n|}, for all n = 1 . . . , N. According to Proposition 2,
the set Ξ̂n comprises the (eligible) candidates for optimal solution of the
sup problem on the left side of (3-6) for any feasible pair (x, λ), and for
each scenario ξ̂n, n = 1, . . . , N. With this notation at hand, by replacing the
infinite set Ξ with the finite set Ξ̂n, for all n = 1, . . . , N, in the constraint
(3-5b), the problem (3-5) reduces to the following linear program:

min
x,λ,sn

c>x + λδ +
1
N

N

∑
n=1

sn (3-13a)

s.t. Q(x, ξ∗` )− λ‖ξ∗` − ξ̂n‖1 ≤ sn, ∀` ∈ Ln, ∀n ≤ N, (3-13b)

λ ≥ 0, (3-13c)

x ∈ X, (3-13d)

which scales with the number of candidate solutions in Ln, for all n =

1, . . . , N. In the next section, we propose decomposition schemes to handle
the extensive linear program (3-13).

Note that Proposition 2 also establishes an equivalence of the worst-
case expectation problem in the left-hand side of constraint (3-6) with the
distribution separation problem (see [28]) based on the Wasserstein set
B̂δ(P̂N) defined below, which comprises all finite distributions supported
on the finite set Ξ̂ :=

⋃
n≤N Ξ̂n:
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B̂δ(P̂N) :=
{
{v`}`≤N·3dξ

:
N·3dξ

∑
`=1

N

∑
n=1
‖ξ∗` − ξ̂n‖1π`n ≤ δ,

N

∑
n=1

π`n = v`, ∀` ≤ N · 3dξ ,

N·3dξ

∑
`=1

π`n = 1/N, ∀n ≤ N,

N·3dξ

∑
`=1

v` = 1,

v` ≥ 0, ∀` ≤ N · 3dξ ,

π`n ≥ 0, ∀` ≤ N · 3dξ , ∀n ≤ N
}

.

The distribution separation problem can be formulated as:

max

N·3dξ

∑
`=1

v`Q(x, ξ∗` ) : {v`}`≤N·3dξ
∈ B̂δ(P̂N)

 . (3-14)

Therefore, we have the following corollary.

Corollary 1. For each x ∈ X, the optimal value of the worst-case expectation
problem of the DD-DRO-W problem equals the optimal value of the distribution
separation problem which comprises the finite distributions supported on the set Ξ̂
within Wasserstein ambiguity set.

Proof . We have the following sequence of equivalences:

sup
P̃∈Bδ(P̂N)

EP̃[Q(x, ξ)] =



min
λ,sn

λδ +
N

∑
n=1

1
N

sn

s.t. sup
ξ∈Ξ

(
Q(x, ξ)− λ‖ξ − ξ̂n‖1

)
≤ sn, ∀n ≤ N,

λ ≥ 0.

(3-15)

=



min
λ,sn

λδ +
N

∑
n=1

1
N

sn

s.t. sup
ξ∈Ξ̂n

(
Q(x, ξ)− λ‖ξ − ξ̂n‖1

)
≤ sn, ∀n ≤ N,

λ ≥ 0.

(3-16)
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= max

N·3dξ

∑
`=1

v`Q(x, ξ∗` ) : {v`}`≤N·3dξ
∈ B̂δ(P̂N)

 . (3-17)

Equality (3-15) is derived by [17, 35]. Equality (3-16) holds by Proposition 2.
Finally, equality (3-17) is obtained by applying again the result from [17, 35] to the
convex reduction of the worst-expectation problem over the Wasserstein ambiguity
set for the discrete distributions supported on the set Ξ̂.

Note that |Ξ̂| = N · 3dξ by definition of set Ξ̂n, so the decomposition
methodology proposed [28] may be computationally intractable even for
moderately high dimensions. Therefore, for low uncertainty dimensionality
dξ , we can address the problem (3-13) by using the decomposition method
presented in [28] which uses the distribution separation problem (3-17).
However, as the problem (3-17) has a large number of variables for high
uncertainty dimensionality, it may not be possible to solve it due to memory
or time constraints. That precise issue was encountered by [36], who
circumvented the problem by using machine learning techniques to select
the random variables with most impact on the model, and then applying
the algorithm of [28] only to those variables.

3.5
Decomposition methods

In this section, we present the proposed numerical schemes to solve
the tractable reformulation (3-13) of the two-stage distributionally robust
optimization problem with right-hand-side uncertainty under a data-driven
Wasserstein based ambiguity set. We show that this problem is suitable to
be solved by three exact decomposition methods: the Benders multi-cut
and single-cut methods and the column and constraint generation method
(C&CG).

In general, a decomposition method can be implemented in a master-
oracle scheme; see, e.g., [13] for an application of that technique to a robust
two-stage model. In our context, the master problem is a relaxation of the
equivalent linear program (3-13) of the two-stage DD-DRO-W problem.
Given the solution of the master (relaxed) problem, the oracle identifies
the worst infeasibility to add the corresponding constraint (or block of
constraints and variables) to the master problem. This iterative procedure
stops whenever the oracle asserts that the master solution is feasible for the
original problem (3-13).
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3.5.1
Column and constraint generation method

We start by proposing a solution methodology to address the problem
(3-13) by using the column and constraint generation method (C&CG).
We develop a iterative procedure based on lower and upper bounding
approximations of the linear program (3-13) which converges to its optimal
value and optimal solution.

By considering the primal formulation (2-2) of the recourse function
Q(x, ξ), the problem

min
x,y`,λ,sn

c>x + λδ +
1
N

n

∑
n=1

sn (3-18a)

s.t. q>y` − λ‖ξ∗` − ξ̂n‖1 ≤ sn, ∀` ∈ LK
n , ∀n ≤ N, (3-18b)

Wy` = H(x)ξ∗` + r(x), ∀` ∈ LK
n , ∀n ≤ N, (3-18c)

y` ≥ 0, ∀` ∈ LK
n ∀n ≤ N, (3-18d)

λ ≥ 0, (3-18e)

x ∈ X, (3-18f)

is equivalent to (3-13) if the set LK
n equals Ln. Instead, if LK

n ⊂ Ln is a subset
defined at iteration K of the iterative procedure, problem (3-18) represents
a relaxation of (3-13). Therefore, its optimal value is a valid lower bound,
LB, for the optimal value of problem (3-13). Henceforth, we call the relaxed
problem (3-18) as the master problem.

For the current optimal solution (xK, λK, sK) of the master problem
(3-18), where sK = (sK

n )n≤N, we need an oracle problem to find the
worst-case uncertainty realization ξ∗` ∈ Ξ̂n maximizing the infeasibility
of constraint (3-18b). Based on this result, we update the subset LK

n , for
all n = 1, . . . , N, and add the block of linear constraints (3-18b)-(3-18c)
and variables (3-18d) - new columns - to the master problem. With this in
mind, let us consider the left-hand-side of the inequality (3-6). We have the
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following equivalences:

sup
ξ∈Ξ

(
Q(xK, ξ)− λK‖ξ − ξ̂n‖1

)
(3-19a)

=


sup
ξ∈Ξ

min
y≥0

q>y− λK‖ξ − ξ̂n‖1

s.t. Wy = H(xK)ξ + r(xK)

 (3-19b)

=


max

θ,ξ
θ>r(xK) + [H>(xK)θ]>ξ − λK‖ξ − ξ̂n‖1

s.t. W>θ ≤ q

ξ ∈ Ξ.

 (3-19c)

We consider the bilinear problem (3-19c) as the oracle problem which
can be reduced to a MILP problem by linearizing the products of binary and
continuous variables. To that end, let us consider the inner problem in the
left-hand side of inequality (3-6) and introduce the notation ∆+ = b− ξ̂n,
∆− = ξ̂n − a3. With this notation at hand, according to Proposition 2, the
optimal solution ξ∗ of problem (3-7) - which is equivalent to problem (3-19c)
- can be expressed by:

ξ∗ = ξ̂n + diag(∆+)z+ − diag(∆−)z−,

where z+, z− ∈ {0, 1}dξ are binary vector variables and diag(∆i) =

diag(∆i
1, . . . , ∆i

dξ
), denotes the diagonal matrix of the vector ∆i, for i = +,−,

i.e.,

ξ∗ =


ξ̂1
...

ξ̂dξ

+


∆+

1 . . . 0
... . . . ...
0 . . . ∆+

dξ




z+1
...

z+dξ

−


∆−1 . . . 0
... . . . ...
0 . . . ∆−dξ




z−1
...

z−dξ



=


ξ̂1 + ∆+

1 z+1 − ∆−1 z−1
...

ξ̂dξ
+ ∆+

dξ
z+dξ
− ∆−dξ

z−dξ


.

Thus, the decision variable ξ of the optimization problem (3-7) can be
replaced by binary decision variables zi, i = +,−, and the optimal value of
problem (3-7) equals:

3The i-th component of the vectors a = (ai)i≤dξ
and b = (bi)i≤dξ

coincides with the
lower and upper limit of the interval [ai, bi], respectively, along on the i-th dimension of
the uncertainty support.
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max
θ,z+,z−

θ>r(xK) + [H>(xK)θ]>[ξ̂n + diag(∆+)z+ − diag(∆−)z−]− λK1>α

s.t. W>θ ≤ q

ξ̂n + diag(∆+)z+ − diag(∆−)z− ≤ α

ξ̂n + diag(∆−)z− − diag(∆+)z+ ≤ α.
(3-20)

However, problem (3-20) has bilinear terms of products of binary and
continuous variables which can be linearized by disjunctive constraint
following [37]. For the detailed exact linearized mixed integer linear
programming (MILP) formulation, see Appendix A.

Let us denote by ρn(xK, λK) the optimal value of the oracle problem
(3-20) (or equivalently problem (3-19c)). For a fixed (xK, λK) we claim that

sK
n ≤ ρn(xK, λK), ∀n ≤ N. (3-21)

Indeed, we have that constraint (3-18b) is active for the ` ∈ LK
n that

maximizes the left-hand-side of constraint (3-18b) over the set LK
n , for all

n = 1, . . . , N, i.e.,

max
`∈LK

n

(
q>y∗` − λK‖ξ∗` − ξ̂n‖1

)
= sK

n , ∀n ≤ N, (3-22)

where y∗` denotes the optimal solution of the primal second-stage variable
y`, for all ` ∈ LK

n , n = 1, . . . , N, within problem (3-18). Therefore, we have
the following valid inequality:

ρn(xK, λK) = sup
ξ∈Ξ

(
Q(xK, ξ)− λK‖ξ − ξ̂n‖1

)
(3-23a)

≥ max
`∈LK

n

(
q>y∗` − λK‖ξ∗` − ξ̂n‖1

)
= sK

n , (3-23b)

for all n = 1, . . . , N. Equality (3-23a) holds because the equivalence between
problems (3-19c) and (3-19a), whereas (3-23b) follows from the fact that the
optimization problem on the right-hand side of (3-23a) is less constrained
than that of (3-23b). Hence, a valid upper bound UB for the problem (3-13)
can be obtained as

UB = c>xK + λKδ +
1
N

N

∑
n=1

ρn(xK, λK). (3-24)

The algorithm converges whenever the UB− LB ≤ ε, i.e, the current solution
(xK, λK, sK

n ) lies within a user-defined tolerance level ε.
We summarize the column and constraint generation algorithm in the

following pseudo-code:
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Algorithm 5 Column and constraint generation method
Initialization: Set K = 0, UB ←− +∞ and LB ←− −∞, and LK

n ←− {n} for

n = 1, ..., N
while UB− LB > ε do

Solve the Master problem (3-18);

Store the Master solution: (LB, xK, λK, sK);

for n=1 to N do
Solve the MILP version of the Oracle problem (3-20) for (xK, λK);

Store the Oracle solution: ρn(xK, λK), (θ∗, ξ∗);

if ρn(xK, λK) > sK
n then

`←− N(K + 1) + n;

Update LK+1
n ←− LK

n ∪ {`} and make ξ∗` ←− ξ∗

end if
end for
Set UB←− min{UB, c>xK + λKδ + 1

N ∑N
n=1 ρn(xK, λK)}

Update K ←− K + 1, add the block of linear constraints (3-18b)–(3-18c) and

variables (3-18d)

end while
return xK, UB, LB

For initialization purpose, we can solve the second-stage problem

min
y≥0

q>y (3-25a)

s.t. Wy = H(x)ξ̂n + r(x) : θn (3-25b)

for the optimal solution x of the deterministic equivalent problem for the
average scenario, ξ = 1

N ∑n≤N ξ̂n, and cast the dual variable θn of the
constraint (3-25b)—which is a dual vertex—for all n = 1, . . . , N. We then
initialize the algorithm (5) with ξ∗n ←− ξ̂n for all n = 1, . . . , N.

3.5.2
Multi-cut Benders

We can also address the problem (3-13) by using a multi-cut Benders
algorithm. By strong duality, we can assess Q(x, ξ∗` ) by:

Q(x, ξ∗` ) = max
d∈D

{
θ>d r(x) + [H>(x)θd]

>ξ∗`

}
, (3-26)

for all ` ∈ Ln and x ∈ X, where {θd}d∈D is the set of vertices of the
dual polyhedron {θ : W>θ ≤ q}, hereafter referred to as dual vertices.
Thus, by replacing Q(x, ξ∗` ) with the enumeration of the affine functions
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{
θ>d r(x) + [H>(x)θd]

>ξ∗`

}
d∈D

in (3-13b), the problem

min
x,λ,sn

c>x + λδ +
1
N

N

∑
n=1

sn (3-27a)

s.t.
θ>d r(x) + [H>(x)θd]

>ξ∗`−λ‖ξ∗` − ξ̂n‖1 ≤ sn,

∀(d, `) ∈ D ×Ln, ∀n ≤ N,
(3-27b)

λ ≥ 0, (3-27c)

x ∈ X, (3-27d)

meets problem (3-13).
We can derive an alternative master problem from the linear program-

ming relaxation of the equivalent problem (3-27). Observe that by solving
the oracle problem (3-19c), we obtain an uncertainty realization and a dual
vertex that maximizes the infeasibility of constraint (3-27b). Let

(θk
n, ξk

n) ∈ arg max
θ,ξ

{
θ>r(xk) + [H>(xk)θ]>ξ − λk‖ξ − ξ̂n‖1

∣∣∣ W>θ ≤ q,

ξ ∈ Ξ

}
(3-28)

denote the optimal solution of the oracle problem, where (xk, λk) is the
optimal solution, at iteration k ≤ K, of the master problem for the finite
extensive equivalent form (3-27). Therefore, a linear programming relaxation
of (3-27) can be derived by substituting constraint (3-27b) with optimality
cuts:

[θk
n]
>r(x) + [H>(x)θk

n]
>ξk

n − λ‖ξk
n − ξ̂n‖1 ≤ sn, ∀k ≤ K, n ≤ N, (3-29)

Note that for K sufficiently large, the relaxed problem equals (3-27) if

{(θk
n, ξk

n) | k ≤ K} = {(θd, ξ∗` ) | d ∈ D, ` ∈ Ln},

for all n = 1, . . . , N.

3.5.3
Single-cut Benders

For the purpose of constructing the single-cut Benders algorithm,
we develop an equivalent formulation that incorporate additional valid
constraints to construct the average cut. The equivalent formulation for
(3-27) is obtained by replacing (3-27b) with
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θ>d r(x) + [H>(x)θd]
>ξ∗` − λ‖ξ∗` − ξ̂n‖1 ≤ sn, ∀(d, `) ∈ D ×L, ∀n ≤ N,

(3-30)

where L = ∪n≤NLn. To see that such equivalence holds, notice that

max
`∈L

Q(x, ξ∗` )− λ‖ξ∗` − ξ̂n‖1 ≤ sup
ξ∈Ξ

Q(x, ξ)− λ‖ξ − ξ̂n‖1 (3-31a)

= max
`∈Ln

Q(x, ξ∗` )− λ‖ξ∗` − ξ̂n‖1 (3-31b)

≤ max
`∈L

Q(x, ξ∗` )− λ‖ξ∗` − ξ̂n‖1. (3-31c)

The first inequality (3-31a) is valid since {ξ`}`∈L ⊆ Ξ, while the second
equality (3-31b) is guaranteed by Proposition 2. Finally, the last inequality
(3-31c) holds since {ξ`}`∈Ln ⊆ {ξ`}`∈L. It follows that

max
`∈L

Q(x, ξ∗` )− λ‖ξ∗` − ξ̂n‖1 = max
`∈Ln

Q(x, ξ∗` )− λ‖ξ∗` − ξ̂n‖1

and consequently

max
(d,`)∈D×L

θ>d r(x) + [H>(x)θd]
>ξ∗` − λ‖ξ∗` − ξ̂n‖1

= max
(d,`)∈D×Ln

θ>d r(x) + [H>(x)θd]
>ξ∗` − λ‖ξ∗` − ξ̂n‖1.

Now, we can rewrite the problem (3-27) as a finite (extensive) linear
program with average cuts by replacing (3-27b) with (3-30) and taking the
average of the latter over n:

min
x,λ,β

c>x + λδ + β (3-32a)

s.t.
1
N

N

∑
n=1

(
[θd]

>r(x) + [H>(x)θd]
>ξ` − λ‖ξ` − ξ̂n‖1

)
≤ β, ∀(d, `) ∈ D ×L,

(3-32b)

λ ≥ 0, (3-32c)

x ∈ X. (3-32d)

Accordingly, we derive an alternative master-oracle scheme that uses the
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same oracle (3-28), but with the modified master

min
x,λ,β

c>x + λδ + β (3-33a)

s.t.
1
N

N

∑
n=1

(
[θk

n]
>r(x) + [H>(x)θk

n]
>ξk

n − λ‖ξk
n − ξ̂n‖1

)
≤ β, ∀k ≤ K,

(3-33b)

λ ≥ 0, (3-33c)

x ∈ X, (3-33d)

where (θk
n, ξk

n) in this case denote the optimal solution of the oracle (3-28)
for the optimal solution (xk, λk) of the problem (3-33) at iteration k− 1. Note
that the resulting master problem (3-33) is less constrained than the linear
programming relaxation (3-27). Therefore, the multi-cut algorithm provides
a tighter lower bound than the single-cut master problem (3-33). In turn, the
single-cut version of the algorithm relies on a reduced number of constraints
(cuts). While this implies a lower computational effort to the master problem,
it is very likely that the multi-cut will converge in fewer iterations. Thus,
there is a tradeoff between these two versions of the algorithm that should
be empirically studied, as we do in the next section.
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4
Conservative solution for the stochastic unit commitment
problem

The unit commitment problem is a major part of power system
operation planning. The stochastic extension of this problem has become
the standard procedure to address the uncertainties associated with the
incorporation of renewable power generation. As usual, the stochastic unit
commitment (SUC) problem has been assessed by the SAA method, however,
solving this problem for large, real-world networks with a large number
of scenarios leads to prohibitive computational times, especially when
considering that the SUC problem needs to be solved in a few hours in
order to decide the day-ahead operation.

As mentioned in [1, 10], a non-converged SAA solution can generate
high disappointment levels because of its instability for a finite moderate
sample. Given that the unit commitment problem relies on the implemen-
tation of a non-converged SAA solution, we developed a DRO model over
the Wasserstein ambiguity set to obtain instead a conservative solution,
which has a mathematical certificate against disappointment. The numerical
results show the superiority of the DRO approach over the SAA solution.

We start from the formulation of the stochastic unit commitment
problem and, then we present the numerical results.

4.1
Data-driven unit commitment formulation

As discussed in [35], when the probability distribution of the electricity
load can not be accurately estimated, the obtained unit commitment decision
can be biased. In the literature, DRO models have been already been applied
to the unit commitment problem (see [38] and references therein). However,
to the best of our knowledge, existing works rely mainly on approximations,
such as affine policies, for the second stage variables. Our paper aims to
address precisely this issue.

We use a classic formulation of a data-driven two-stage stochastic
unit commitment problem [39]. The first stage comprises the commitment
decisions while the second stage accounts for the dispatch decisions and
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power flow. We develop the problem by minimizing the expected total
generation cost, and the uncertainty on the right-hand-side of the problem
in the net electricity load parameter (load subtracted by uncertain renewable
injections).

We summarize the notations by sets, parameters, first-stage variables
and second-stage variables listed as follows:

Set Description
Ib Set of electricity generators that are located in bus b
T Set of time of periods
L Set of lines
B Set of nodes

LIb = {l ∈ L : l = (k, b), k ∈ B}
LOb = {l ∈ L : l = (b, k), k ∈ B}

Table 4.1: Description of the sets.

Parameter Description
N Number of electricity load scenarios
Sl Susceptance of the line l ∈ L
Cu

i Fixed cost of unit i ∈ I
CSU

i Start-up cost of unit i ∈ I
CSD

i Shut-down cost of unit i ∈ I
RU

i Ramp-up limit of unit i ∈ I
RD

i Ramp-down limit of unit i ∈ I
Pi Maximum power generation of unit i ∈ I
Pi Minimum power generation of unit i ∈ I
ξ̂b,t,n The electricity load in bus b ∈ B in time t ∈ T

corresponding to scenario n ≤ N

Table 4.2: Description of the parameters.

Variable Description
ui,t Binary commit variable:

1 if the thermal generator i is on in time t; 0 otherwise
vi,t Start-up variable for unit i ∈ I in time t ∈ T
wi,t Shut-down variable for unit i ∈ I in time t ∈ T

Table 4.3: Description of the first-stage variables.
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Variable Description
pi,t,n Power generation of unit i ∈ I in time t ∈ T in scenario n ≤ N
fl,t,n Power flow of line l ∈ L in time t ∈ T in scenario n ≤ N
θb,t,n Phase angle of node b ∈ B in time t ∈ T in scenario n ≤ N

Table 4.4: Description of the second-stage variables.

Based on this notation, the mathematical formulation of the data-driven
two-stage stochastic unit commitment problem is as follows:

min
ui,t,vi,t,wi,t,pi,t

∑
i∈I

∑
t∈T

[
Cu

i ui,t + CSU
i vi,t + CSD

i wi,t +
1
N

N

∑
n=1

[
CP

i pi,t,n
] ]

(4-1a)

s.t.
∑

i∈Ib

pi,t,n + ∑
l∈LIb

fl,t,n− ∑
l∈LOb

fl,t,n = ξ̂b,t,n,

∀b ∈ B, ∀t ∈ T , ∀n ≤ N
, (4-1b)

fl,t,n = Sl(θb,t,n − θd,t,n), l = (b, d) ∈ L, ∀t ∈ T , ∀n ≤ N
(4-1c)

vi,t − wi,t = ui,t − ui,t−1, ∀i ∈ I , ∀t ∈ T , (4-1d)

vi,t ≤ ui,t, ∀i ∈ I , ∀t ∈ T , (4-1e)

wi,t ≤ 1− ui,t, ∀i ∈ I , ∀t ∈ T , (4-1f)

pi,t − pi, t− 1 ≤ RU
i ui,t−1 + P̄ivi,t, ∀i ∈ I , ∀t ∈ T , (4-1g)

pi,t−1 − pi, t ≤ RD
i ui,t + Piwi,t, ∀i ∈ I , ∀t ∈ T , (4-1h)

Piui,t ≤ pi,t ≤ P̄iui,t, ∀i ∈ I , ∀t ∈ T , (4-1i)

0 ≤ vi,t ≤ 1, ∀i ∈ I , ∀t ∈ T , (4-1j)

0 ≤ wi,t ≤ 1, ∀i ∈ I , ∀t ∈ T , (4-1k)

ui,t ∈ {0, 1}, ∀i ∈ I , ∀t ∈ T . (4-1l)

In the above formulation, constraint (4-1b) ensures balancing the amount of
power that flows into and out of each bus. Constraint (4-1c) represents the
linearized Kirchhoff’s law for a a DC power flow approximation according
to which the power flow on a line l is proportional to the phase angle
difference between the two end buses of the line. Constraints (4-1d)-(4-1e)
are the start-up and shut-down operational constraints for each thermal
unit. Constraints (4-1f) and (4-1g) are the the ramping up and ramping
down constraints, respectively. Finally, constraint (4-1h) is the minimum
and maximum power generation of the unit i ∈ I in time t ∈ T .

We consider the distributionally robust optimization version of the
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problem (4-1). Regarding to the empirical distribution of historical data, we
construct the Wasserstein-based ambiguity set for a given confidence level
δ > 0. We then consider the formulation (3-4) of the problem (4-1), where
the first-stage variable x is [ui,t, vi,t, wi,t]i∈I ,t∈T and Q(x, ξ) represents the
economic dispatch problem.

For illustrative purposes, we start from a single-bus version of the
problem (4-1) by substituting constraint (4-1b) by

∑
b∈B

∑
i∈Ib

pi,t,n = ∑
b∈B

ξ̂b,t,n, (4-2)

and vanishing the constraint (4-1c).

4.2
Numerical experiments for the Wasserstein-based approach

In this section, first, we analyze the computational efficiency of each
decomposition method described in Chapter 3, by assessing the DD-DRO-W
unit commitment problem single-bus. Then, given the superiority of the
C&CG decomposition method, we benchmark this method with the SAA.
For this, we consider the stochastic unit commitment problem with power
flow constraints, for a system consisting of 4 buses, 4 transmission lines, 14
thermal generators, and 2 wind farms.

4.2.1
Computational efficiency analysis

For performance comparison purposes, we solve a single-bus system
with I = 5, 14, 54 thermal generators over a 24-hour operational time. We
develop scenarios for the electricity load over 24-hour span time by setting
a deterministic profile distribution of the load and discounting wind power
generation. The source of data for the wind power generation is the Global
Energy Competition (GEFCom) [40, 41]. For reproducibility purposes, the
system data is presented in Appendix B.

With the scenarios at hand, we construct the Wasserstein ball around
the empirical distribution. Although the number of training samples N can
be estimated for a given confidence level δ > 0, for illustration purposes
in our computational experiments we consider a fixed number of training
samples equal to 100 and a fixed parameter δ equal to 3.

The computational experiments were implemented using JuMP [23], a
modeling language for mathematical optimization embedded in the Julia
programming language. The solver Gurobi 7.5.2 was used as the MIP
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solver to run the computational experiments on an Intel Core i7, a 4.0-GHz
processor with 32 GB of RAM.

For illustrative purposes, we report in Table 4.5 the gap—the difference
between the upper and lower bounding approximation—at iteration K
and the computing time of each algorithm, for the system with 5 thermal
generators. We used ε = 0.0.

The C&CG method is clearly superior. The results show that the oracle
sub problem asserts feasibility faster for the current solution of the master
problem (xK, λK) of the C&CG method. This is the main advantage of this
algorithm, whenever the computational burden of the master problem can
be dealt with.

Iteration C&CG Benders Benders
multi-cut single-cut

K UB− LB UB− LB UB− LB
1 1273245 1404389 1404388
2 0 147243 282048
3 135559 135559
4 8471 48166
5 8064 19806
6 10656 19806
7 1670 19490
8 1274 16295
9 5548 16295
10 756 16295
11 1278 16295
12 2946 16295
13 760 15564
14 799 15564
15 863 15041
16 799 14310
17 0 13777
40 9142
80 3857

160 2218
165 0

Time 3394 26622 148127(CPUs)

Table 4.5: Data-driven Unit Commitment problem with 5 generators.

Table 4.6 reports the computing time of convergence of each algorithm
for the systems with 14 and 54 thermal generators, respectively. Symbol
(-) means that there is no computing time to report. For the system with
14 thermal generators, all algorithms converged in moderate computing
time, whereas for the system with 54 thermal generators, only the C&CG
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algorithm converged, which confirms the superiority of this last method
even for these large systems.

Method
Syst-14 Syst-54
Time Time

(CPUs) (CPUs)
C&CG 15365 24225

Bender’s 27833 -
multi-cut
Bender’s 38379 -
single-cut

Table 4.6: Computing time.

We also benchmark the proposed solution methodology with the
existing solution approaches applied to the class of parametric linear
programs with right-hand-side uncertainty. First, we consider the tractable
reformulation of the TS-DRO-W problem derived from the convex reduction
develop in [14] which scales with the number of dual vertices. We use the
algorithm for enumerating vertices embedding in the computational tool
Polyhedral.jl of the programming language Julia. However, the enumerating
algorithm does not converge in reasonable time for the considered instances.

Given the equivalence of the TS-DRO-W problem with the TS-
DRO problem under the Wasserstein ambiguity set which comprises the
finite distributions supported on the set Ξ̂, we utilize the algorithmic
decomposition method presented in [28] for two-stage distributionally
robust mixed binary programs to the address unit commitment instances.
Nevertheless, the resulting distribution separation problem could not be
solved, because the enumeration of the set Ξ̂ has N · 3dξ complexity which
is out-of-memory for the considered uncertainty dimensionality.

4.3
SAA Benchmark

Once we have an efficient algorithmic scheme to solve the DD-DRO-
W problem – the C&CG algorithm presented in the Chapter 3 –, we can
benchmark this approach with the SAA method. For the empirical estimator
P̂N, we obtain the conservative solution by assessing the DD-DRO over the
Wasserstein ball centered in P̂N. Following [1], we consider the smallest
Wasserstein ball that contains the actual data-generating distribution with
confidence 1 − β for some β ∈ (0, 1). The SAA solution is obtained by
assessing the deterministic equivalent of this problem. We compare both
approaches by an out-of-sample analysis.
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Let xN
wass and xN

SAA, the corresponding optimal solution of the DD-
DRO-W and the SAA problem, respectively, for P̂N. Note that this solution
inherit the randomness from the empirical estimator P̂N. We define the
reduction metric

rN =

(
1− c>xN

wass + E[Q(xN
wass, ξ)]

c>xN
SAA + E[Q(xN

SAA, ξ)]

)
× 100% (4-3)

by the percentage difference between the out-of-sample cost of the SAA and
the conservative DD-DRO-W solution. We reference the probability

P∞
(

rN ≤ τ
)

(4-4)

as the out-of-sample disappointment of the SAA solution over the conserva-
tive solution xN

wass for the empirical estimator P̂N. That is, the cumulative
distribution function (c.d.f) of the estimator rN under the sample path
distribution P∞.

We generate realizations of the estimator rN from the optimal solutions
xN

wass and xN
SAA of the data-driven unit commitment problem (4-1). These

solutions correspond to different realizations of the empirical estimator P̂N

defined by batches independent and identically distributed (i.i.d), each of
which composed of N = 100 samples. We construct the Wasserstein ball
with confidence 95%. Fig. 4.1 displays the c.d.f (4-4) of the estimator rN.

Figure 4.1: Cumulative distribution function of the estimator rN for the
data-driven unit commitment problem.

As shown in Fig. 4.1, the out-of-sample disappointment is high for values
between 15% and 17.5% — P∞(15% ≤ rN ≤ 17.5%) ≈ 0.75. Besides showing
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the instability of the SAA solution for changes in the data, this result
reveals a concern for the power system operator since a poor out-of-sample
performance in the order of 15% translates into substantial cost overruns.

Even though the existing methods render the DD-DRO-W problem
intractable, we have developed exact decomposition schemes – C&CG
mainly – to assess this problem. As we have seen, the obtained conservative
solution alleviates the concern of poor out-of-sample performance, in
settings where the asymptotic convergence of the SAA method is no
guarantee because of computational time limitations.
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5
Conclusion

We have developed two conservative solution methodologies for the
class of two-stage stochastic linear optimization problems with right-hand-
side uncertainty and rectangular support: When the true data-generating
probability distribution is known, we propose an exact solution method
based on a partition-refinement algorithm of the support and a DRO
problem that minimizes the worst-expected cost over all extreme probability
distributions with known partition-adapted conditional expectations; When
only historical observations of the uncertainty are available, we proposed a
DRO problem based on the Wasserstein metric to incorporate ambiguity in
the data-generating probability distribution and developed a novel solution
method to solve this problem.

5.1
Conclusion of the moment-based approach

Considering that the complexity of the moment-based approach grows
exponentially over an uncertainty dimension, for computational tractability,
we reformulated the upper-bound problem and proposed algorithmic
schemes: (i) for problems with low-dimensional uncertainty, we developed
a deterministic equivalent linear programming model, (ii) for medium-
sized uncertainty dimensionality, we proposed a column and constraint
generation algorithm, and (iii) to handle high dimensional uncertainty, we
proposed a simplex-based heuristic method whose complexity grew linearly
with the uncertainty dimension.

Out-of-sample computational experiments show that our moment-
based method avoid disappointment in comparison to the non-converged
sub-optimal optimistic solution given by the lower-bound problem based
on Jensen’s inequality when the cost of recourse was high. This raises
awareness regarding the use of the optimistic solution provided by the
partition-based method to solve two-stage stochastic optimization problems
when the recourse cost is significantly high. Many practical applications that
exhibit this type of recourse cost and depend on the implementation of a non-
converged sub-optimal solution because of computational time limitations
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will benefit from the developed framework to obtain a conservative solution.

5.2
Conclusion of the Wasserstein-based approach

We have presented also a new algorithmic approach to solve distri-
butionally robust optimization problems with right-hand-side uncertainty
over Wasserstein balls. Our model assumes distributions supported on an
rectangular set within a Wasserstein ball, which is built around the empirical
distribution of observed data of the uncertainty. The proposed approach and
formulation allow us solving the extensive form of a convex reformulation
of the problem very efficiently.

This issue is of paramount importance because of the existing algo-
rithmic schemes are computationally intractable for instances with high
uncertain dimensionality or an exponential number of dual vertices. Instead,
we have proposed a finite extensive equivalent form of the problem which
is solved by using an exact decomposition algorithm that converges in a
finite number of iterations.

We tested the proposed algorithms with a two-stage unit commitment
problem for the day-ahead scheduling of power generation by assuming
an uncertain energy load. We analyzed the computational performance of
each algorithm by varying the size of the considered systems. In particular,
there are no tractable formulations in the literature for these instances,
which demonstrates that our proposed approach is a substantial advance to
address the class of DRO problems with right-hand side uncertainty.

The results show that when the second-stage problem has a complex
polyhedral structure, the C&CG has the best computational performance
among the three methods that were tested. The superiority of C&CG
stems from the fact that it optimizes the actual value of the second-stage
function for each uncertainty realization, unlike the approaches based on
Benders methods that optimize only a piecewise linear approximation of
this function.

DBD
PUC-Rio - Certificação Digital Nº 1712642/CA



References

[1] P. Mohajerin Esfahani and D. Kuhn, “Data-driven distributionally
robust optimization using the wasserstein metric: performance
guarantees and tractable reformulations,” Mathematical Programming,
vol. 171, no. 1, pp. 115–166, Sep 2018. [Online]. Available:
https://doi.org/10.1007/s10107-017-1172-1

[2] C. C. Huang, W. T. Ziemba, and A. Ben-Tal, “Bounds on the expectation
of a convex function of a random variable: With applications to
stochastic programming,” Operations Research, vol. 25, no. 2, pp. 315–
325, 1977.

[3] J. R. Birge and R. J. West, “Designing approximation schemes for
stochastic optimization problems, in particular for stochastic programs
with recourse,” Stochastic Programming 84 Part I, pp. 54–102, 1986.

[4] K. Frauendorfer, “Solving slp recourse problems with arbitrary
multivariate distributions: The dependent case,” Mathematics of
Operations Research, vol. 13, no. 3, pp. 377–394, 1988. [Online]. Available:
http://www.jstor.org/stable/3690018

[5] N. Edirisinghe and W. T. Ziemba, “Implementing bounds-based
approximations in convex-concave two-stage stochastic programming,”
Mathematical Programming, vol. 75, no. 2, pp. 295–325, 1996.

[6] N. C. P. Edirisinghe and W. T. Ziemba, “Bounds for two-stage stochastic
programs with fixed recourse,” Mathematics of Operations Research,
vol. 19, no. 2, pp. 292–313, 1994.

[7] N. C. P. Edirisinghe and G.-M. You, “Second-order scenario
approximation and refinement in optimization under uncertainty,”
Annals of Operations Research, vol. 64, no. 1, pp. 143–178, Dec 1996.
[Online]. Available: https://doi.org/10.1007/BF02187644

[8] T. Homem-de-Mello and G. Bayraksan, “Monte Carlo sampling-based
methods for stochastic optimization,” Surveys in Operations Research and
Management Science, vol. 19, pp. 56–85, 2014.

https://doi.org/10.1007/s10107-017-1172-1
http://www.jstor.org/stable/3690018
https://doi.org/10.1007/BF02187644
DBD
PUC-Rio - Certificação Digital Nº 1712642/CA



References 70

[9] A. Kleywegt, A. Shapiro, and T. Homem-de-Mello, “The sample average
approximation method for stochastic discrete optimization,” SIAM
Journal on Optimization, vol. 12, no. 2, pp. 479–502, 2001.

[10] D. Bertsimas, V. Gupta, and N. Kallus, “Robust sample average
approximation,” Mathematical Programming, vol. 171, no. 1-2, pp. 217–
282, 2018.

[11] H. Gassmann and W. T. Ziemba, A tight upper bound for the expectation
of a convex function of a multivariate random variable. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1986, pp. 39–53. [Online]. Available:
https://doi.org/10.1007/BFb0121113

[12] K. Frauendorfer and P. Kall, “A solution method for slp recourse
problems with arbitrary multivariate distributions - the independent
case,” Problems of Control and Information Theory, vol. 17, 01 1988.

[13] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems
using a column-and-constraint generation method,” Operations Research
Letters, vol. 41, no. 5, pp. 457 – 461, 2013.

[14] P. Mohajerin Esfahani and D. Kuhn, “Data-driven distributionally
robust optimization using the wasserstein metric: performance
guarantees and tractable reformulations,” Mathematical Programming,
vol. 171, no. 1, pp. 115–166, Sep 2018. [Online]. Available:
https://doi.org/10.1007/s10107-017-1172-1

[15] P. Kall and D. Stoyan, “Solving stochastic programming problems with
recourse including error bounds,” Mathematische Operationsforschung
und Statistik. Series Optimization, vol. 13, no. 3, pp. 431–447, 1982.
[Online]. Available: https://doi.org/10.1080/02331938208842805

[16] A. Madansky, “Bounds on the expectation of a convex
function of a multivariate random variable,” Ann. Math. Statist.,
vol. 30, no. 3, pp. 743–746, 09 1959. [Online]. Available:
https://doi.org/10.1214/aoms/1177706203

[17] W. Wiesemann, D. Kuhn, and M. Sim, “Distributionally robust convex
optimization,” Operations Research, vol. 62, no. 6, pp. 1358–1376, 2014.
[Online]. Available: https://doi.org/10.1287/opre.2014.1314

[18] J. Birge and Louveaux, Introduction to Stochastic Programming, 2nd ed.
New York Dordrecht Heidelberg London: Springer, 2011.

https://doi.org/10.1007/BFb0121113
https://doi.org/10.1007/s10107-017-1172-1
https://doi.org/10.1080/02331938208842805
https://doi.org/10.1214/aoms/1177706203
https://doi.org/10.1287/opre.2014.1314
DBD
PUC-Rio - Certificação Digital Nº 1712642/CA



References 71

[19] A. Street, F. Oliveira, and J. M. Arroyo, “Contingency-constrained
unit commitment with n− k security criterion: A robust optimization
approach,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1581–
1590, Aug 2011.

[20] D. Bertsimas and M. Sim, “The price of robustness,” Operations
Research, vol. 52, no. 1, pp. 35–53, Jannuary-February 2004. [Online].
Available: http://dx.doi.org/10.1287/opre.1030.0065
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A
Appendix

A.1
Proof of the Theorem

If { fn}∞
n=1 is a sequence of functions pointwise converging to f , i.e.,

if f (x) = limn−→∞ f (x) for all x ∈ X, then fn epi-converges to f , if the
sequence { fn}∞

n=1 is monotone increasing or monotone decreasing [3] and f
is continuous.

Epi-convergence is a kind of convergence very useful for approximate
minimization problems in the following sense:
Suppose a sequence of function { fn}∞

n=1 epi-converges to f . Let z∗ :=
min
x∈X

f (x), z∗n := min
x∈X

fn(x), and x∗ ∈ arg min
x∈X

f (x), x∗n ∈ arg min
x∈X

fn(x) the

correspond minimizers, respectively. Then, under some assumptions, we
can ensure that

lim
n−→∞

z∗n = z∗, and lim
n−→∞

x∗n = x∗.

Before prove the Theorem 1, we will present the following lema that
will be necessary to do the proof.

Lema 1. let G = {(ξ, η) ∈ Rdξ+1 : ξ ∈ Ξ, η = Q(x, ξ)} be the graph of the
function Q(x, ·) and let co(G) be its convex hull. Then

sup{η ∈ R : (ξ̄, η) ∈ co(G)} = max
δ∈D(ξ̄)

Eδ[Q(x, e)] (A-1)

Proof of Lema 1. It is clear that

max
δ∈D(ξ̄)

Eδ [Q(x, e)] ≤ sup{η ∈ R : (ξ̄, η) ∈ co(G)}.

On the other hand, let (ξ̄, η) ∈ co(G). Then there exist S, ξs ∈ Ξ, and
probabilities P(ξ = ξs) ≥ 0, s = 1, . . . , S (parameters of the convex combination),
such that ∑S

s=1 P(ξ = ξs)ξs = ξ̄, ∑S
s=1 P(ξ = ξs)Q(x, ξs) = η. Now for every s,

there exist conditional probabilities P(e = ej|ξ = ξs) ≥ 0, j = 1, . . . , 2dξ such that

∑2dξ

j=1 P(e = ej|ξ = ξs)ej = ξs, i.e., ξ̂ = ∑s ∑j P(ξ = ξs)P(e = ej|ξ = ξs)ej.
Since Q(x, ·) is convex
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η =
S

∑
s=1

P(ξ = ξs)Q(x, ξs)

= ∑
s

P(ξ = ξs)Q

(
∑

j
P(e = ej|ξ = ξs)ej

)
≤∑

s
∑

j
P(ξ = ξs)P(e = ej|ξ = ξs)Q(x, ej).

Setting δj = ∑s P(ξ = ξs)P(e = ej|ξ = ξs) yields ξ̄ = ∑j δjej, ∑j δj = 1,
δj ≥ 0, and

η ≤∑
j

δjQ(x, ej) ≤ max
δ∈D(ξ̄)

Eδ [Q(x, e)].

Therefore

sup{η ∈ R : (ξ̄, η) ∈ co(G)} ≤ max
δ∈D(ξ̄)

Eδ [Q(x, e)].

Making use of the properties of epi-convergent functions and the lema
above, we will prove the Theorem 1.

Proof of Theorem 1.

1.1 Let Ξ′ ⊆ Ξ, let G′ be the graph of the function Q(x, ξ) with ξ ∈ Ξ′ and let
ξ̄
′
= E[ξ|ξ ∈ Ξ′] be the conditional mean, then

sup{η : (ξ̄, η) ∈ co(G))} ≥ sup{η : (ξ̄
′, η) ∈ co(G′))}

which implies

max
δ∈D(ξ̄)

Eδ[Q(x, e)] ≥ max
δ∈D(ξ̄′)

Eδ[Q(x, e′)],

where e′ is the random variable with support on the vertex of the cell Ξ′.

Suppose that Pn+1 refines Pn, then there exist Ξk ∈ Pn such that
Ξk = Ξk′ ∪ Ξk′′ with Ξk′ , Ξk′′ ∈Pn+1.

Let ek, ek′ , and ek′′ be the random variables with support in the set of vertex
of the cells Ξk, Ξk′ and Ξk′′ , respectively, and let pk′ = P(ξ ∈ Ξk′) and
pk′′ = P(ξ ∈ Ξk′′). By the above we have that

pk′
(

max
δ∈D(ξ̄k

)

Eδ [Q(x, ek)]

)
≥ pk′

(
max

δ∈D(ξ̄k′
)

Eδ [Q(x, ek′)]

)
,
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and

pk′′
(

max
δ∈D(ξ̄k

)

Eδ [Q(x, ek)]

)
≥ pk′′

(
max

δ∈D(ξ̄k′′
)

Eδ [Q(x, ek′′)]

)
,

then,

(pk′ + pk′′)︸ ︷︷ ︸
pk

(
max

δ∈D(ξ̄k
)

Eδ [Q(x, ek)]

)
≥pk′

(
max

δ∈D(ξ̄k′
)

Eδ [Q(x, ek′)]

)

+ pk′′
(

max
δ∈D(ξ̄k′′

)

Eδ [Q(x, ek′′)]

)
.

Since the other cells in Pn and Pn+1 are the same, it follows that

n

∑
k=1

pk

(
max

δ∈D(ξ̄k
)

Eδ [Q(x, ek)]

)
≥

n+1

∑
k=1

pk

(
max

δ∈D(ξ̄k
)

Eδ [Q(x, ek)]

)
,

which implies f U
n (x) ≥ f U

n+1(x) for all x ∈ X, therefore

zU
n = min

x∈X
f U
n (x) ≥ min

x∈X
f U
n+1(x) = zU

n+1.

1.2 It is true that

ξ̄
k
=

pk′ ξ̄
k′
+ pk′′ ξ̄

k′′

pk

By convexity it holds that

Q(x,ξ̄k
) ≤ pk′

pk Q(x, ξ̄
k′
) +

pk′′

pk Q(x, ξ̄
k′′
).

Since the others cells in Pn and Pn+1 are the same, it follows that

n

∑
k=1

pkQ(x,ξ̄k
) ≤

n+1

∑
k=1

pkQ(x,ξ̄k
)

which implies f L
n (x) ≤ f L

n+1(x) for all x ∈ X, therefore

zL
n = min

x∈X
f L
n (x) ≤ min

x∈X
f L
n+1(x) = zL

n+1.
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1.3 We have that

max
δ≥0

{
∑

j
δjQ(x, ek

j )
∣∣∣∑

j
δj = 1, ∑

j
δjej = ξ̄

k
}
≤ max

δ≥0

{
∑

j
δjQ(x, ek

j )
∣∣∣∑

j
δj = 1

}
.

Let Mk := max
ξ∈Ξk

Q(x, ξ) = max
δ≥0

{
∑j δjQ(x, ek

j )
∣∣∣∑j δj = 1

}
. By convexity

max
ξ∈Ξk

Q(x, ξ) = Q(x, ek
j ) for some j.

By the existence of E[Q(x, ξ)], it holds that

n

∑
k=1

pk Mk −→ E[Q(x, ξ)] as n −→ ∞,

therefore

n

∑
k=1

pk max
δ∈D(ξ̄k

)

Eδ [Q(x, ek)] −→ E[Q(x, ξ)] as n −→ ∞,

which implies f U
n (x) −→ f (x) as n −→ ∞ for all x ∈ X. Since

the sequence { f U
n }∞

n=1 is non-increasing and the objective function f is
continuous, we have that f U

n epi-converges to f . So, if x∗ = lim
n−→∞

xU
n then

x∗ ∈ arg minx∈X f (x). Therefore

lim
n−→∞

zU
n = lim

n−→∞
f U
n (xU

n ) = f (x∗) = z∗.

On the another hand, we have that

mk := min
ξ∈Ξk

Q(x, ξ) ≤ Q(x, ξ̄
k
).

By the existence of E[Q(x, ξ)] it holds that

n

∑
k=1

pkmk −→ E[Q(x, ξ)] as n −→ ∞

so
n

∑
k=1

pkQ(x, ξ̄
k
) −→ E[Q(x, ξ)] for all x ∈ X,

which implies f L
n (x) −→ f (x) for all x ∈ X. Since the sequence { f L

n }∞
n=1

is no-decreasing and the objective function f is continuous, we have that
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f L
n epi-converges to f . So, if x∗ = lim

n−→∞
xL

n then x∗ ∈ arg minx∈X f (x).
Therefore

lim
n−→∞

f L
n (x

L
n) = f (x∗) = z∗.

A.2
Oracle MILP problem for the moment-based approach

Let (x∗m, η∗mπ∗m) be the optimal solution of the master problem (2-16)
at iteration m. By assuming Ξ =

�dξ

i=1[ai, bi] and defining a = [a1, . . . , adξ
]>

and b = [b1, . . . , bdξ
]>, any extreme point ek

j , j = 1, . . . , 2dξ , of cell k =

1, . . . , n can be expressed by diag(a)z + diag(b)(1− z), where z ∈ {0, 1}dξ

is a vector binary variable. Then, problem (2-17) is equivalent to:

max
θ,z

θ>r(x∗m) + [H>(x∗m)θ− η∗m]
>[diag(a)z + diag(b)(1− z)]− π∗

s.t. W>θ ≤ q

=



max
θ,z



my

∑
i=1

θiri(x∗m) +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m) θizj︸︷︷︸
wj

i

aj −
dξ

∑
j=1

ajη
∗
j zj

dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)(θibj − θizj︸︷︷︸
wj

i

bj)−
dξ

∑
j=1

bjη
∗
j (1− zj)− π∗


s.t.

my

∑
i=1

Wjiθi ≤ qj, j = 1, . . . , dy.

(A-2)
By introducing the auxiliary variable w = [w1, . . . , dξ ]

> where wj
i = θizj,

i = 1, . . . , my, j = 1, . . . , dξ , problem (A-2) is equivalent to the following
MILP problem:
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max
θ,z



my

∑
i=1

θiri(x∗m) +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)w
j
i aj −

dξ

∑
j=1

ajη
∗
j zj

dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)(θibj − wj
ibj)−

dξ

∑
j=1

bjη
∗
j (1− zj)− π∗


s.t.

my

∑
i=1

Wjiθi ≤ qj, j = 1, . . . , dy,

|wj
i − θi| ≤ (1− zj)M j = 1, . . . , dξ , i = 1, . . . , my,

|wj
i | ≤ Mzj, j = 1, . . . , dξ , i = 1, . . . , my,

zj ∈ {0, 1}, j = 1, . . . , dξ ,

(A-3)

Where M ∈ R is sufficiently large and the products wj
i = θizj, i = 1, . . . , my,

j = 1, . . . , dξ are linearized.

A.3
Proof of the Proposition

Proof of Proposition 1. By duality we have that

max
δ∈R(ξ̄k

)

Eδ [Q(x, vk)] = max
δk≥0


dξ+1

∑
j=1

δk
j Q(x, vk

j ) :
dξ+1

∑
j=1

δk
j vk

j = ξ̄
k,

dξ+1

∑
j=1

δk
j = 1

 .

Since the recourse function Q(x, ξi) is monotonic for all i = 1, . . . , dξ we
have that

Q(x, vk
j ) ≤ Q(x, ξ̂

k
), ∀j = 1, . . . , (dξ + 1),

since vk
j only differs from ξ̂

k
in just one component. So, ∑

dξ+1
j=1 δk

j Q(x, vk
j ) ≤

Q(x, ξ̂
k
) for all x ∈ X. By other hand, by the existence of E[Q(x, ξ)], it holds that

n

∑
k=1

pkQ(x, ξ̂
k
) −→ E[Q(x, ξ)] as n −→ ∞,

therefore

n

∑
k=1

pk
dξ+1

∑
j=1

δk
j Q(x, vk

j ) −→ E[Q(x, ξ)] as n −→ ∞, ∀x ∈ X.

Since f̃n(x) := c>x + ∑n
k=1 pk ∑

dξ+1
j=1 δk

j Q(x, vk
j ) is a sequence of decreasing
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and continuous functions pointwise converging to f (x) = c>x + E[Q(x, ξ)], then
f̃n(x) epi-converge to f (x). Therefore, by epi-convergence, {z̃U

n }∞
n=1 and {x̃U

n }∞
n=1

converge to the optimal value and optimal solution of (2-1), respectively.

A.4
Oracle MILP problem for the Wasserstein-based approach

Since the optimal solution ξ∗ of problem (3-7) is a vertex of the
hypercube Ξ or the median ξ̂n, the decision variable α can be expressed
by α = diag(∆+)z+ + diag(∆−)z−. For a given (x∗m, λ∗m), by introducing
auxiliary variables wj = z+j θ and wj = z−j θ, the objective function of
problem (3-7) is equivalent to

θ>r(x∗m) + [H>(x∗m)θ]
>[ξ + diag(∆+)z+ − diag(∆−)z−]

− λ∗m1>α

=
my

∑
i=1

θiri(x∗m) +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)θiξ j +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m) θiz+j︸︷︷︸
wj

i

∆+
j

−
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m) θiz−j︸︷︷︸
wj

i

∆−j − λ∗m

dξ

∑
j=1

αj

=
my

∑
i=1

θiri(x∗m) +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)θiξ j +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)w
j
i∆

+
j

−
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)w
j
i∆
−
j − λ∗m

dξ

∑
j=1

αj.

Then, the oracle f k(x∗m, λ∗m) has a MILP equivalent given by:
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max
θ,z+,wj,z−,wj,α



my

∑
i=1

θiri(x∗m) +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)θiξ j +
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)w
j
i∆

+
j

−
dξ

∑
j=1

my

∑
i=1

Hj,i(x∗m)w
j
i∆
−
j − λ∗m

dξ

∑
j=1

αj


s.t.

my

∑
i=1

Wjiθi ≤ qj, j = 1, . . . , dy,

ξ j − ξ
k
j + ∆+

j z+j − ∆−j z−j ≤ αj, j = 1, . . . , dξ ,

ξ
k
j − ξ j + ∆−j z−j − ∆+

j z+j ≤ αj, j = 1, . . . , dξ ,

|wj
i − θi| ≤ (1− z+j )M j = 1, . . . , dξ , i = 1, . . . , my,

|wj
i − θi| ≤ (1− z−j )M j = 1, . . . , dξ , i = 1, . . . , my,

|wj
i | ≤ Mz+j , j = 1, . . . , dξ , i = 1, . . . , my,

|wj
i | ≤ Mz−j , j = 1, . . . , dξ , i = 1, . . . , my,

z+j + z−j ≤ 1 j = 1, . . . , dξ ,

z+j , z−j ∈ {0, 1}, j = 1, . . . , dξ ,
(A-4)

where M ∈ R is sufficiently large and the products θiz+j and θiz−j , for
j = 1, . . . dξ , i = 1, . . . , my, are linearized.

A.5
The Farmer problem

One farmer specializes in raising N types of crops. He has L (km2)

of land and he must decide how much land will be allocated to devote
each crop. The fixed cost to rise the i-th type of crop is ci per ton (T), for
i = 1, . . . , N. By another hand, he must attend some restrictions related
to his plantation; he must have at least hi (T) of the i-th type of crop, for
i = 1, . . . , N. Those quantities can be obtained by own plantation or buying
them in a local market. The purchase price for the i-th product is si per ton
(T), for i = 1, . . . , N. Additionally, every excess of the i-th type of crop can
be sold at the selling price of ri per ton (T), for i = 1, . . . , N.

Let

ξi = productivity land for rising the i-th type of crop,

xi = acres of land devoted to rise the i-th type of crop,

wi = tons of the i-th type of crop sold,
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yi = tons of the i-th type of crop purchased

Since the farmer wants to minimize the cost, the two-stage stochastic
linear optimization problem is:

min
x≥0

N

∑
i=1

ci · xi + E[Q(x, ξ)]

s.t.
N

∑
i=1

xi ≤ L,

(A-5)

where

Q(x, ξ) =min
y,w

N

∑
i=1

si · yi −
N

∑
i=1

ri · wi

s.t. ξi · xi + yi − wi ≥ hi, ∀i = 1, . . . , N

y ≥ 0, w ≥ 0.

(A-6)

To simplify the problem, we assume that the productivity land for
raising each crop is represented by independent random variables with
uniform distribution.

For the two instances of the farmer’s problem (eight and 20 types of
crops) the data to run the computational experiments is reported bellow:

Plantation cost Purchase price Selling price
i = 1 92 667 28
i = 2 80 905 35
i = 3 92 1024 41
i = 4 88 660 42
i = 5 91 974 25
i = 6 80 1041 35
i = 7 92 978 40
i = 8 93 997 45

Total land (L) : 3500

Table A.1: Parameters of the Farmer’s problem for 8 crops.
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Uncertainty ai bi
i = 1 2,296 8,575
i = 2 1,981 6,820
i = 3 1,079 7,730
i = 4 2,470 6,232
i = 5 1,305 6,390
i = 6 0,900 6,445
i = 7 2,043 5,430
i = 8 0,409 4,214

Table A.2: Uncertainty support of the random vector for the Farmer´s
problem with 8 crops.

Plantation cost Purchase price Selling price
i = 1 81 853 137
i = 2 86 570 64
i = 3 85 817 135
i = 4 83 983 58
i = 5 81 1001 70
i = 6 93 547 131
i = 7 91 728 106
i = 8 85 966 135
i = 9 89 875 158
i = 10 94 913 87
i = 11 82 1010 118
i = 12 95 844 140
i = 13 92 698 133
i = 14 94 834 109
i = 15 92 724 107
i = 16 93 702 150
i = 17 84 980 95
i = 18 94 771 66
i = 19 85 752 77
i = 20 81 907 151

Total land (L) : 5200

Table A.3: Parameters of the Farmer’s problem for 20 crops.

DBD
PUC-Rio - Certificação Digital Nº 1712642/CA



Appendix A. Appendix 84

Uncertainty ai bi
i = 1 0,963 4,05
i = 2 0,844 2,72
i = 3 2,070 4,32
i = 4 2,640 4,60
i = 5 1,730 1,48
i = 6 2,400 4,99
i = 7 2,410 5,33
i = 8 1,980 4,03
i = 9 1,180 4,79

i = 10 2,060 3,27
i = 11 2,900 4,34
i = 12 1,100 4,39
i = 13 2,690 3,43
i = 14 1,260 6,12
i = 15 2,750 3,91
i = 16 1,150 5,36
i = 17 1,920 4,41
i = 18 1,760 5,68
i = 19 0,547 4,71
i = 20 0,508 3,91

Table A.4: Uncertainty support of the random vector for the Farmer´s
problem with 20 crops.

A.6
The aircraft allocation problem

The aircraft allocation problem was one of the first stochastic linear
programs ever formulated by Dantzig [22]. In this problem aircraft of
different types are allocated on routes in order to minimize the operating
costs. Besides the operating cost, there are costs associated with bumping
passengers due to insufficient capacity to meet demand.

Let

I = set of available aircrafts,

R = set of routes,

R(i) = subset of routes serviced by aircraft of type i,

bi = number of aircraft available of type i,

cir = cost of operating an aircraft of type i along route r,

tir = passenger capacity of aircraft i on route r,

hr = passenger demand on route r,
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qr = revenue lost per bumped passenger on route r,

xir = number of aircraft of type i assigned to route r,

yr = number of bumped passengers on route r,

zr = number of empty seats on route r.

we can set up the aircraft allocation problem with the following model:

min
x ∑

i∈I
∑

r∈R(i)
cir · xir + E[Q(x, ξ)]

s.t. ∑
r∈R(i)

xir ≤ bi, ∀i ∈ I,
(A-7)

where

Q(x, ξ) =min
y,z ∑

r∈R
qr · yr

s.t. ∑
i∈I, r∈R(i)

tir · xir + yr − zr = hr, ∀r ∈ R,

xir ≥ 0, ∀i ∈ I, r ∈ R(i), yr ≥ 0 ∀r ∈ R.

(A-8)

The input data to execute this computational experiment was taken
from the following site:

Low recourse cost:

q = (11, 13, 0, 13, 8, 7, 0, 7, 0, 12)>

High recourse cost:

q = (301, 349, 239, 700, 254, 493, 348, 70, 474, 361)>
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